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УДК 547.64 

DEFINITE CHIRALITY MEASURES FROM ELECTRON TORSION: 
APPLICATION TO HELICAL MOLECULES 

A.V. Luzanov* and M.M. Kukuiev* 

The previously given pseudoscalar chirality index based on the electron path torsion [Struct. Chem. 3, 175 
(1992)] is modified, and the corresponding positive definite chirality measure is proposed. The approach is 
applied to helicenes and DNA double-stranded minihelices. In addition, the electronic chirality measure is 
divided into atomic contributions. It allows to provide an appropriate pictorial presentation of molecular 
chirality. Several model examples of discrete helix structures are given. They offer an understanding of non-
trivial differences in describing molecular chirality by aid of the pseudoscalar torsion invariants and by aid of 
the positive orbital torsions proposed in the present paper. 

Keywords: molecular chirality, chirality operator, LCAO representation, helicenes, DNA minihelices. 

 

Introduction 

Certainly, chirality is a remarkable paradigm which embraces various sides of science and nature. 
In chemistry, molecular chirality was discovered by Pasteur (at age 25!). Mathematical models of the 
molecular chirality were proposed first by Guye after more than forty years (for detail see [1]). The 
problem of chirality quantification is also the old one, and for molecular structures it was discussed 
and carefully investigated in many works, starting from the Kitaigorodskii book [2]. Further develop-
ment was discussed and overviewed in [1,3-6]). 

It must be stressed that no fully acceptable solution to this problem can be achieved if we assume 
that both geometrical and physicochemical aspects should be taken into account. Really, from the 
mathematical viewpoints, the chirality measure is required to be a nonnegative function of molecular 
geometrical parameters. The measure must be vanishing if and only if the molecular structure is 
achiral [3,5,6]. At the same time, physical and physicochemical chiral systems are usually described 
by extensive (additive) pseudoscalar quantities, such as the angle of optical rotation or helical twisting 
power (in cholesteric liquid crystal mixtures). It is important that all these pseudoscalar characteristics 
are of electronic nature. However, they can be zero-valued even in some definitely chiral systems too. 
That is why pseudoscalars are not able to provide consistent chirality measurement, as it was clearly 
shown by Weinberg and Mislow [6]. On the other hand, we showed in [7] that the nonnegative (sim-
ply, positive) definite chirality measures cannot consistently furnish the additivity (more exactly, addi-
tive separability). The latter property guarantees vanishing of chirality measures for racemic mixtures. 
It seems that researchers usually remain unaware of this unsolvable dilemma. In this situation we must 
make a choice of the "lesser evil", that is we prefer to use more correct semi-positive chirality meas-
ures. 

Indeed, specific examples (some of them are given in Ref. [8]; see also critique in Ref. [9]) tell us 
that the additive pseudoscalar chirality index from our first works [10,11] can be unsuitable for quanti-
fying molecular chirality in sufficiently large systems. On this account we elaborated recently a spe-
cial procedure transforming molecular pseudoscalars into positive definite quantities [12]. Unfortu-
nately, this approach is rather laborious for very large systems because it includes many numerical 
integrations. 

In this paper we propose a modified approach which is much simpler. Unlike most of the existing 
positive measures, this new index quantifies the electronic chirality rather than the geometrical or 
shape chirality. We implemented the appropriate procedure within the Mathematica 5.2 environment 
and made some illustrations for two representative classes of helical structures (helicenes and mini-
helices of DNA). In Appendix we consider in more detail the additivity problem of chirality measures, 
and provide the additional illustration on modeled helices. 
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Definite orbital torsions 

First we recall the previously given technique of quantifying molecular chirality by the electron 
path torsion [7,8]. In the cited works the well-known differential-geometric notion of curve torsion is 
used as a starting point. The respective linear Hermitian operator of the torsion (‘chirality operator’), 

K̂ , is constructed to be 

 ˆ {( ) h .c.} / 4^ ^K
    p p p p p , (1) 

where p  is the one-electron momentum operator, h.c is the Hermitian conjugation, and dots above 
symbols denote the time derivatives of corresponding order. Each such derivative is computed by a 

standard commutation of p  (then of 

p  etc.) with one-electron Hamiltonian, h, of the system in ques-

tion. In practice, the needed matrices (instead of operators) are rather easily constructed, especially 
within typical semiempirical schemes of quantum chemistry. 

Having at our disposal the K̂  matrix we can directly calculate the overall chirality measure 0  as 

follows: 

 0
ˆTr K  . (2) 

This is the basic pseudoscalar chirality index in our approach. In order to pass to definite measures we 
divide the index into orbital contributions. For this we introduce a full set of eigenvectors of h, in other 

words, an appropriate MO set }{ j in a conventional LCAO representation. With each j  having 

orbital energy j , the orbital chirality index is defined to be 

 ˆ ˆTr j j j j jK K      . (3) 

Then Eq. (2) is obviously tantamount to a spectral sum of the form 

 0 j
j

  , (4) 

where the sum is over all MOs existing within the model used. 
Now restrict ourselves by a class of low-symmetry molecular systems (no orbital degeneracy). In 

this case all MOs belong to one-dimensional irreducible representations, so all orbital projectors 

jjjP   

are totally symmetric. Next, take into account that (1) is a pseudoscalar operator. Then if the system 
achiral, K̂  changes its sign under improper symmetry operations, but jP  does not. Thus, in agree-

ment with (3) all orbital chiralities j  disappear, and 00  , as it must be for achiral molecules. In 

chiral molecules only proper rotations are possible, and K̂  is invariant under these operations. So 

generally, indices 0j  but among them some j are positive and some negative. Now it is clear 

that it is possible that in sum (4) these values are almost mutually compensated, and it may cause an 
incorrect measurement of the electron chirality. To avoid these situations we replace j  in (4) by their 

absolute values. Thus the new definition of the electronic chirality measure is 

 | |j
j

  . (5) 

For understanding differences between this positive chirality measure and pseudoscalar index   pre-

viously given in Ref. [10], it is worth examining chirality in simple discrete helices as done in Appen-
dix. 

The overall chirality index (5) can be partitioned into atomic contributions }{ A  as follows 

 | | A
A j j

j

P  , (6) 

where A
jP  is the Löwdin-type population of MO j  on atom A. Eqs. (5) and (6) are basic in the 

proposed definite chirality scheme for the low symmetry structures. Notice that the Löwdin popula-
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tions are normally based on the squared LCAO coefficients. We prefer using more localized represen-
tation which is generated by the normalized quartic (fourth power) LCAO coefficients. For modeling 
the electronic structure of the studied systems we used the extended Hückel method with parameters 
of Hoffmann [13]. 

In the case of high symmetry systems the above scheme is somewhat reformulated. Now, instead of 

individual j , we must take a whole subset of MOs related to degenerate (in general) energy level 

j : 

][1, }{ jjj   , 

where ][ j  is a multiplicity of j . Then 





  ,

][

1
, j

j

j
jjP 



  

and 





 ,,

][

1

ˆˆTr jj

j

j
jj KPK 



 . 

With these replacements, Eqs. (5) and (6) remain unchanged, as well as the above considered selection 
rules do. 

To conclude this section we present the results of computations on Eqs. (5) and (6) for the D2 
symmetry conformation of cyclohexane. This twist-boat structure is a paradigmatic example in con-
formation analysis and molecular chirality [14,15]. In Refs. [8,12] we even used ]HC[  126  as a suit-

able unit for chirality measurements. We display in Fig. 1 the plane projection of the system (so some 
CH and CC bonds are superimposed); here and elsewhere the green discs ( carbon atoms) and black 
discs (hydrogen atoms) have the diameter proportional to the corresponding atomic chirality index. 
From Fig. (1) we see that H atoms (50% of all atoms) contribute to a small extend (in fact almost 7 
%). In most of the systems we studied here, such a contribution is even lesser, and we will suppress 
the hydrogen atoms in all subsequent chirality diagrams. It is worth mentioning that the chirality index 
is distributed unevenly over the carbon skeleton of cyclohexane: more preferable are two C atoms 
lying on the long C2 rotation axis (see Fig. 1). Other examples (see below) support this rather general 
rule. In what follows we will use the mentioned cyclohexane units: ]HC[  126 = 19.872 atomic units. 

 

 
Figure 1. The chirality distribution over the cyclohexane molecule. 

 

Helicenes 

Helicenes belong to a very interesting class of axial chirality molecules.They have been investi-
gated extensively in chemistry more than one hundred years [16]. The chirality quantification for heli-
cenes was also studied [7,17,18]. Here we report the results of computing  -index and chirality dis-
tribution }{ A  for the same systems (Table 2). We observe from the table that in the even members of 
[n]helicenes (the last row in Table 1) the chirality is somewhat more localized than in the odd ones. In 
the even members the chiral (C2) axis passes through a C-C bond whereas in the odd members it 
passes perpendicular to a C-C bond. Thus, the rule postulated in the above section evidently works in 
helicenes as well. 

One more questionable point we would like to discuss concerns a size (or n) dependence of   for 
helicenes. For convenience, we give in Fig. 2 relevant plots of   and molar rotation [M] (taken from 
[19]) against n. 
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Table 1. Chirality index   and chirality distribution }{ A  in [n]helicenes Table 1. Chirality index 

  and chirality distribution }{ A  in [n]helicenes 

n   }{ A  n   }{ A  n   }{ A  

5 3.2 

 

7 4.7

 

9 6.8

 

6 4.0 

 

8 5.9 10 7.9
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n

2

4

6

8
k

 
Figure 2. Size dependence of chirality (the left panel) and molar rotation [M] taken from Ref. [19] 
(the right panel) for n[helicenes]. [M] is scaled by factor 10000. 

 
It is clear that like [M], the new  -index approximately behaves monotonically with increasing n. The 
similar behavior was described previously in Ref. [19]. However, somewhat another dependences 
were reported in Refs. [17,18] (occurrence of minimum near n=8 in Ref. [17] and minimum and 
maximum near n=10 in Ref. [18]). We cannot grasp these peculiarities by the usual geometric reason-
ing. As there are no other reported results for the same systems, this issue, raised in [7], remains un-
clear. 

 

DNA minihelices 

DNA minihelices are an inevitable simplification of native DNA if we are trying to understand the 
most important molecule of life [20] by quantum chemistry methods. Small self-complementary mini-
helixes were studied in various theoretical aspects almost more than forty years [21]. At present, more 
sophisticated models of DNA examined at the DFT level can be provided [22,23], and here we will 
use the optimized geometry structures obtained in these works. 

It is worth noting that within DNA problem the molecular chirality measures were first considered 
only quite recently in an extensive study of Pietropaolo and Parrinello [24]. Their work is based on the 
pseudoscalar chirality index introduced in [25,26] (this index is just criticized by Weinberg and Mis-
low [6]). Below we describe our results for DNA minihelices analyzed by the positive definite chiral-
ity measure. 

We use the conventional notations, and following Refs. [22,23] we consider double-stranded 
d(A)3d(T)3 and d(G) 3d(C)3 minihelices. The representative results are given in Tables 2 and 3. When 
computing individual single-stranded fragments (strands in the tables) we take the corresponding fro-
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zen part of the whole duplex structure (using the same molecular geometry as in the whole system of 
interest). The excess,  , is defined as the difference between the actual   value for the whole sys-

tem (‘united’ in Table 1) and that from the sum of   for the frozen subsystems (strands 1 and 2 in our 
case). Turning to Table 2 we see that the B-form of the individual trinucleotide strands is certainly 
more chiral than the respective A-form. Furthermore, d(G)3d(C)3 is more chiral than d(A)3d(T)3 but 
only in the B-form, whereas the respective A-forms have practically the same chirality. 

Notice that our index is fairly sensitive to small variations of structural molecular parameters. Nev-
ertheless, the chirality difference between A- and B-form of the individual strands remains the same 
even for rather strong perturbations of the atomic coordinates. In a sense, thermal vibrations can be 
treated as such a perturbation. To be more specific , we give below the results of a simple simulation 
of structurally perturbed DNA minihelices. We introduced slight random distortions of the molecular 
geometry by adding a random displacement vector to every atomic coordinate (maximal variation was 
fixed to be 0.05 Å ). Then usual computations were performed for several such perturbed systems (a 
number of trials was 5), and the usual averages (denoted by [pert] ) were obtained. In particular, we 

found that in strand d(A) 3 [pert]  is equal to 3.11 and 3.80 for the perturbed A- and B-forms, respec-
tively. In other words, in this case we have no principal differences, in comparing with the data of 
Table 2. The analogous are results for other individual strands. Qualitatively the situation in the double 
minihelices is also not in sharp contrast to that of the unperturbed systems. In the case of double mini-
helices Ia and IIa we obtained the [pert]  values 5.65 and 5.60, respectively, which are not signifi-

cant different. Systems Ib and IIb are a little more different: the [pert]  values are 7.38 and 7.28, 
respectively. This is a smaller difference than in Table 2, but still sufficiently marked. Surely, the 
above consideration is only preliminary, and more refined techniques should be elaborated to judge 
about significant or not significant chirality differences in various types of problems. 

We also see that   is rather small (few percents), especially in A- d(A) 3 d(T)3. Hence, inter-
strand nonadditivity effects, which are mainly due to long-distance interactions, can be negligible in 
our chirality analysis. 

 
Table 2. Chirality index   and excess   for A- and B-forms of d(A)3d(T)3 and d(G) 3d(C)3 

minihelices. 
 minihelix  [strand 1]  [strand 2]  [United]   

Ia A- d(A) 3 d(T)3 3.22 2.90 5.69 -0.18 
Ib B- d(A) 3 d(T)3 3.81 3.80 7.43 -0.43 
IIa A- d(G) 3 d(C)3 2.94 3.14 5.69 -0.39 
IIb B- d(G) 3 d(C)3 3.92 3.65 7.26 -0.31 

 
Table 3. Summary chirality indices (in %) ]C[ , ]N[ , ]O[ , ]P[ , and ]H[  related to the cor-

responding atoms of individual frozen strands in A- and B-forms of the duplexes 

Strand ]C[ ]N[ ]O[ ]P[ ]H[
A- d(A) 3  38 27 28 2 6 
B- d(A) 3  50 18 24 2 6 
A- d(T)3 45 11 35 4 6 
B- d(T)3 54 8 32 2 5 
A- d(G) 3  38 23 31 3 6 
B- d(G) 3 50 16 26 2 5 
A-d(C)3 42 11 37 3 7 
B- d(C)3 54 6 31 2 6 

 
Now we will try to understand one interesting point concerning the extent to which the chirality in 

DNA strands owes to the dissymmetric sugar-phosphate backbone, and what is the role of the nitrous 
bases. To this end we denote by SP the sugar phosphate backbone (consisting of 5-carbon deoxyribose 
sugars and phosphate groups) , and define ]   SP[  as the sum of A  over all SP atoms. As a result, 
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we find that only slightly more than 50% of the total   value is reproduced by such ‘base-free’ sugar-
phosphate backbone subsystem. For instance, in B-d(A)3 we obtain  /]  PS[  =0.53. This behavior of 
  is not in the same line with the results of work [24]. In the latter the sugar-phosphate fragments 
(more exactly, only very short segments of polynucleotide strings) are considered when quantifying 
DNA chirality by the pseudoscalar index. The rest of the DNA molecule was ignored in [24]. How-
ever, the molecular chirality is a too complicated property for simple interpretation in terms of only 
local regions and related notions. That is why the examination of the whole system, not its small parts 
only, is desirable from the very beginning. The data of Table 3 where we display the summary contri-
butions from all types of atoms (C, N, O, P, and H), are also in agreement with this viewpoint. In this 
table we see that for the minihelices the next-most important (after carbon atoms) are oxygen atoms. 
Even the phosphorus atoms give relatively small contribution to the overall chirality. The additional 
insight is provided by atomic distributions }{ A . We will exhibit only two relevant examples of the 
strands taken from B- d(A) 3 d(T)3 (see Fig. 3). 

 
B- d(A) 3  B- d(T) 3  

 
Figure 3. The atomic }{ A distribution for the frozen B- d(A) 3 and B- d(T) 3 structures. The nitrogen 
atoms are highlighted in blue, oxygen atoms in red, and four-coordinate phosphorus atoms in magenta. 

 

Conclusion 

In the present paper we proposed the new chirality quantification scheme based on modifying pre-
vious works [7,10]. Essentially, we were able to preserve the differential-geometry background of the 
whole approach and produce here the positive definite chirality measure. With help of this it is simple 
to examine the electronic chirality in large systems such as DNA-like structures. Furthermore, the 
atomic decomposition of the overall chirality measure is defined, and a visual chirality portrait of 
molecule can be easily made. At least, It is also interesing to understand the chirality in simple 
discret-type model helices as done in Appendix. 

In most of the examples considered here we observed a sufficiently delocalized picture of the dis-
tributed chirality. Specifically, a significant contribution of the nitrous bases in the DNA minihelices is 
obtained. This feature is not so unusual if we recall the approximate analysis of local atomic contribu-
tions to the optical rotation given recently in Refs. [27,28]. In the cited works it was shown that even 
“the chemical groups far from stereogenic centers can dominate the chiroptical effects” [27]. Indeed, 
there is a general effect of inducing optical activity in achiral molecules or achiral fragments which 
interact with dissymmetric molecular subunits. This effect was interpreted long ago for the polynu-

cleotides in which the circular dichroism in the nitrous bases arises mainly from * - transitions [29]. 
It is desirable to continue the presented studies, and involve in future more sophisticated techniques. 
However, the main inference from the above results about a global chiral structure of helical networks 
seems reasonable and, we believe, will be stable with respect to the more extended techniques. 
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Appendix 

Here we additionally discuss the peculiarities of the proposed chirality measure. First, we repeat the 
argumentation from Ref. [7] about the incompatibility of positivity and additivity requirements for 
chirality measure. The proof is almost trivial. Let the given chirality index   be an additive measure. 

Then for two isolated species A and B we have )()()( BABA   . Now take B as a mirror 

image of A, and signify the latter by #A . From the above additivity requirement we have 

)()()( ## AAAA   . But the united system #AA  comprising of the isolated A  and #A  is 

generally considered as achiral (‘racemate’) what means 0)( #  AA . Thus, )()( #AA    for 

the additive  , and this property satisfies by all existing pseudoscalar index. At the same time, the 

opposite identity )()( #AA   is valid for any positive chirality measure . Notice that pseudoscalar 
index from Ref. [25] remains in use (see, e. g., review [30]), despite the strong critique Weinberg and 
Mislow have given in Ref. [6]. 

This contradiction can be demonstrated for the model helix-like structures which we studied previ-
ously in Ref. [10] within the pseudoscalar approach. Now we present the extended study which can 
clarify the above analysis. Namely we will use a finite set of atoms lying in a discrere circular helix of 
the form: 

jj tx cos ,  jj ty sin  , jj taz  , 

where 2 /jt j m , and 0, , ( 1)j m   . Here a is a helix pitch parameter; m is a number of 

atoms in each turn, and   is a number of turns. For the specific calculations given in Table 4 we used 
6m  and 5  to produce a basic helix (structure I in the table). The next system II is the same I 

with an opposite twist (more exactly, opposite handedness). The identical helices with the same hand-
edness are linked in [I,I] and in [I,II] two helices with opposite handedness are asymmetrically united. 
At last, in the racemic structure I+II, helices I and II are not linked. Notice that there exists a fine dis-
tinction between handedness and chirality (“All handed objects are chiral, but not all chiral objects are 
handed” [31]). 

We computed the above described systems within the topological model [10] which employs a 
Hückel-type Hamiltonian h for Eq. (1). In Table 4 we can see all the expected differences in behavior 
of two kinds of the considered chirality measures. In particular, in the linked structure [I,II] the local 
chiralities are almost compensated, and both indices predict a slightly chiral structure. At the same 
time, for racemic mixture I+II, only the positive measure   detects an occurrence of local chiral struc-
tures, but pseudoscalar measure   and most physical and physicochemical observations do not. It is 

worth turning attention to equal values of ||   and   for the first three systems in Table 4. This fact is 
owing to a specific simplicity of discrete helices and their orbital properties. Of course, generally, 

 || , and significant differences between these measures occur too frequently. 

The above results can be generalized to an arbitrary system CBA    of non-interacting 
subunits. If these subunits are randomly situated in a real space (“in general position”), then 

][][][][ CBACBA    . 
Strictly speaking, this is not the additivity law, because the individual subunits can have different 

handednesses, and the above expression does not reflect this possibility. If cluster CBA    is 
achiral in toto (that is the cluster is not in general position), then automatically 0 . 
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Table 4. The pseudoscalar chirality measure  and positive measure   for various model helices. 

All quantities are given in units of  -value for one helix turn (6 atoms). 
 I 

 

II [I,I]  [I,II] 

 

I+II 

  -7.667 7.667 -16.637 0.318 0. 

  7.667 7.667 16.637 0.319 15.333 
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А.В. Лузанов, М.А. Кукуев. Дефинитная мера хиральности из электронного кручения: применение к спи-
ральным молекулам. 

Модифицирован предложенный ранее псевдоскалярный индекс хиральности, основанный на кручении 
электронных траекторий, и предложена положительно определенная мера хиральности. Подход применен 
к гелиценам и двойным миниспиралям ДНК. В дополнение, электронный индекс разбивается на атомные 
вклады, что позволяет дать наглядное графическое представление молекулярной хиральности. Пред-
ставлено несколько модельных примеров дискретных спиральных структур. Они дают понимание нетри-
виального различия в описании молекулярной хиральности с помощью псевдоскалярного инварианта 
кручения и с помощью положительных орбитальных кручений, предложенных в данной статье. 

Ключевые слова: молекулярная хиральность, оператор хиральности, представление ЛКАО, гелицены, 
миниспирали ДНК. 

 

А.В. Лузанов, М.А. Кукуєв. Дефінітна міра хіральності з електронного скруту: застосування до спіральних 
молекул. 

Модифіковано раніше введений псевдоскалярний індекс хіральності, що був заснований на скруті елект-
ронних траєкторій, та запропоновано позитивно визначену міру хіральності. Підхід застосовано до геліце-
нів та подвійних мініспіралей ДНК. Додатково електронний індекс розкладаеться на атомні внески, що 
дозволяє наочне графічне представлення молекулярної хіральності. Розглянуто декілька модельних при-
кладів дискретних спіральних структур. Вони допускають тлумачення нетривіальної різниці в описуванні 
молекулярної хіральності за допомогою псевдоскалярного інваріанта скруту та за допомогою позитивних 
орбітальних скрутів, що запропоновані в даній роботі. 

Ключові слова: молекулярна хіральність, оператор хіральності, представлення ЛКАО, геліцени, мініс-
пиралі ДНК. 
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