ЭЛЕКТРОХИМИЯ

УДК 544.643:076.2

СИНТЕЗ И СВОЙСТВА КАТОДНОГО МАТЕРИАЛА – ЛИТИРОВАННОГО ФОСФАТА ЖЕЛЕЗА – ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ

Э. В. Панов¹, С. М. Малеваный¹, Ю. А. Тарасенко², Н. Т. Картель²

Показаны возможности регулирования электрохимических свойств катодного материала - LiFePO₄ - путем изменения методов и условий его синтеза. Обсуждаются оптимальные способы получения нанокомпозита LiFePO₄ с проводящим углеродом (механическая смесь компонентов или покрытие на зернах LiFePO₄), а также методы улучшения обратимости электродного процесса (пики на ЦВА 3,3/3,5B), стабильности циклирования катода, достижения высоких зарядных характеристик (до 150 мАч/г) путем допирования композита LiFePO₄/С катионами переходных металлов Mn, Cr, Ni, Zn и др. и анионами CI⁻.

Ключевые слова: нанокомпозит LiFePO₄/C, синтез и допирование катионами переходных металлов и Cl⁻, свойства и характеристики катода.

Введение

Фосфаты металлов подгруппы железа - представители новой группы электродных материалов для перезаряжаемых литий-ионных источников тока [1], среди которых наиболее перспективен LiFePO₄ со структурой оливина [2]. Он обладает рядом важных особенностей: высокая теоретическая емкость (170 мАч/г), термическая устойчивость (≤ 80 °C), высокий потенциал заряда/разряда (3.4 В относительно литиевого электрода), приемлемая устойчивость в процессе заряда/разряда, низкая стоимость производства и высокая экологичность. Основные недостатки этого материала - низкая электронная проводимость при комнатной температуре (10⁻⁹ См·см⁻¹) и замедленная диффузия ионов лития (1.8 10⁻¹⁴ см²/с) [1-3].

При получении таких материалов обычно широко используются следующие методики [1-3]: твердофазный и гидротермальный синтезы, золь-гель - метод, спрей-пиролиз, осаждение из газовой фазы, темплатные и микроэмульсионные технологии, а также размалывание в планетарных мельницах.

Недостатки твердофазного синтеза: высокая температура (до 1300 °C), повышенное содержание примесей в получаемых продуктах, низкая гомогенность образцов и сложность формирования наноразмерных кристаллов.

Для получения кристаллических образцов заключительной стадией синтеза в остальных названных методах является термообработка (6-36 часов при 600-800 °C в Ar или N₂). При этом размеры частиц и морфология порошков изменяются в худшую сторону.

В настоящей работе на примере LiFePO₄ рассматриваются пути устранения указанных недостатков, в том числе за счет синтеза в солевых расплавах композитов - литированных фосфатов железа с углеродом.

Экспериментальные результаты и их обсуждение

Синтез LiFePO₄ со структурой оливина

Для характеризации синтезированных порошков на основе LiFePO₄ использовали методы: рентгенофазовый анализ (РФА: определение фазового состава и среднего размера частиц), просвечивающая электронная микроскопия (ПЭМ: морфология, размер частиц, дисперсность), химический элементный анализ (содержание Fe, P и примесей в образцах), Раманспектроскопия (содержание и форма введенного в порошки углерода). При изучении функциональных свойств катодов, полученных из синтезированных порошков по технологии толстых

¹ Институт общей и неогранической химии им. В. И. Вернадского НАН Украины, г. Киев

² Институт химии поверхности им. А. А. Чуйко НАН Украины, г. Киев

[©] Э. В. Панов, С. М. Малеваный, Ю. А. Тарасенко, Н. Т. Картель, 2012

пленок, применяли методы: циклическая вольтамперометрия (ЦВА: обратимость катодного процесса), гальваностатические заряд/разрядные кривые (определение циклической стабильности и зарядной емкости), импедансная спектроскопия (определение проводимости LiFePO₄ и коэффициента диффузии Li⁺).

Традиционно порошки аморфных литированных фосфатов железа получают взаимодействием растворов солей Li₂CO₃ (или LiCl), (NH₄)₂HPO₄, Fe(CH₃CO₂)₂ (или FeC₂O₄), которые в химическом синтезе служат соответственно источниками Li, P и Fe. Примеры проведения синтезов приведены в табл. 1. Здесь же показаны условия термообработки, необходимые для получения кристаллических порошков. Перспективным методом формирования катодного материала LiFePO₄ является разработанный нами синтез его в нитратных расплавах при 400 °C [5-7].

Исходные вещества			Условия термообработки						
Источник Li	Источник Р	Источник Fe							
Li ₂ CO ₃	$(NH_4)_2HPO_4$	$Fe(CH_3CO_2)_2$	800 °С, 24 часа в Аг						
Li ₃ PO ₄	$Fe_3(PO_4)_2 \cdot 8H_2O$		700 °С, 7 час в Ar						
Li ₂ CO ₃	$(NH_4)_2HPO_4$	FeC ₂ O ₄ ·2H ₂ O	800 °С, 36 час в N ₂						
LiNO ₃	$(NH_4)_2HPO_4$	Fe(NO ₃) ₃ ·9H ₂ O	750 °С, 12 час в Аг						
LiCl	H_3PO_4	FeCl ₂ ·4H ₂ O	700 °С, 12 час в N ₂						
Li ₂ CO ₃	$Fe[(C_6H_5PO_3)(H_2O)]$		>600 °С, >16 час в N ₂						
Li(CH ₃ COO)	H ₃ PO ₄	Fe(NO ₃) ₃ ·9H ₂ O	(золь-гель) 500 °С, 10						
			часов в N ₂ , 600 °C, 10 ча-						
			сов в N ₂						
LiH ₂ PO ₄		Fe ₂ O ₃	750 °С, 8 часов в Аг						
Li ₃ PO ₄	FePO ₄ , Fe		600 °С, 30 минут в Аг						
Li ₃ PO ₄	$Fe_3(PO_4)_2$ ·5H ₂ O		550 °С, 15 минут в N ₂						

Таблица 1. Способы синтеза кристаллов LiFePO₄ [4]

Такой синтез выполняется путем ионного обмена Li^+ (расплав) с катионом NH_4^+ прекурсора NH_4FePO_4 ·2H₂O:

$$NH_4FePO_4 + LiNO_3 \rightarrow LiFePO_4 + NH_4NO_3.$$
(1)

№ пп	прекурсор Fe	Прекурсор Р	pН	Содержание, %вес.		
				Fe	Р	$\mathrm{NH_4}^+$
1	FeSO ₄ ·7H ₂ O	NH ₄ H ₂ PO ₄	6	41.27	14.08	8.33
2	FeSO ₄ ·7H ₂ O	NH ₄ H ₂ PO ₄	4	33.52	18.04	10.51
3	FeSO ₄ ·7H ₂ O	NH ₄ H ₂ PO ₄	2	25.60	28.37	9.12
4	FeSO ₄ ·7H ₂ O	$(NH_4)_2HPO_4$	6	43.05	13.71	8.17
5	FeSO ₄ ·7H ₂ O	$(NH_4)_2HPO_4$	4	34.22	17.98	10.82
6	$(NH_4)_2Fe(SO_4)_2\cdot 6H_2O$	NH ₄ H ₂ PO ₄	6	42.86	13.89	8.45
7	$(NH_{1})_{0} = Ee(SO_{1})_{0} = 6H_{0}O_{1}$	NH.H.PO.	4	35.14	17.92	10.78
8	$(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$	NH ₄ H ₂ PO ₄	2	27.78	26.07	9.31

Таблица 2. Результаты оптимизации условий получения прекурсора NH₄FePO₄·2H₂O.

После изучения различных возможных способов синтеза (см. табл. 2) нами разработана и оптимизирована методика получения прекурсора NH₄FePO₄ по схеме:

$$NH_4H_2PO_4 + FeSO_4 + 2H_2O \rightarrow NH_4FePO_4 \cdot 2H_2O \downarrow + H_2SO_4.$$
(2)

Реация (2) протекает в присутствии ацетатного буфера.

Для получения композита LiFePO₄/С в расплав добавляли аскорбиновую кислоту в количестве, соответствующем 20 %-ному содержанию углерода в порошке. Синтезированные образцы идентифицированы методами РФА, ПЭМ и элементного анализа. Данные рентгенофазового анализа синтезированных в расплавах образцов LiFePO₄ (рис. 1) свидетельствуют, что получены наноразмерные кристаллические порошки литированного фосфата железа.

Рис. 1. Дифрактограмма образца LiFePO₄, синтезированного в расплаве KNO₃ при 400 °C.

Этим методом (без дополнительной термообработки) можно получать порошки с размерами зерен d в диапазоне 5-20 нм (величина d определена по формуле Шеррера из уширения рефлексов на дифрактограммах (рис. 1)) с допустимым содержанием примесей, выраженной кристалличностью и нужной морфологией. Порошки, получаемые указанными выше традиционными методами (табл. 1), также наноразмерны, но после обязательной при этих методах термообработки они рекристаллизуются (укрупняются). При этом размытые максимумы на дифрактограммах переходят в острые пики, характерные для микрокристаллических порошков.

Макроэлектропроводность литированных фосфатов железа

Уже в первой работе [1], показавшей перспективность использования LiFePO₄ со структурой оливина в качестве катодного материала литий-ионного аккумулятора, было установлено, что введение в катодную массу углерода для увеличения электропроводности G улучшает его электрохимические свойства. Например [8], при увеличении содержания углерода с 3 до 7 % на циклической вольтамперограмме уменьшается сдвиг между анодным и катодным пиками (с 0.8 В до 0.5 В), пики сужаются и удлиняется горизонтальное плато на кривой «емкость - количество циклов заряд/разряд» (с 130 мА ч/г до 165 мА ч/г при скорости 0.1 С).

Использовались два приема: введение углерода различных модификаций (ацетиленовая сажа, графиты) в катодную массу, либо формирование углеродного покрытия на уже полученных или синтезируемых кристаллах LiFePO₄ путем введения в реакционную смесь дополнительного источника углерода (глюкоза, этиленгликоль и др.). В итоге получается композитный материал типа LiFePO₄/C. Наличие в электродном материале углерода (в виде наполнителя или покрытия) подтверждено [9] Раман - спектрами (рис. 2) и данными просвечивающей электронной микроскопии ПЭМ [10] (рис. 3).

Рис. 2. Раман - спектр наночастиц LiFePO₄ с углеродным покрытием LiFePO₄/C : D-аморфный углерод, G - графит.

Рис. 3. ПЭМ - изображение зерна LiFePO₄ с комбинированным углеродным (С) и оксидным (CuO) покрытиями.

При сравнении таких носителей углерода как «graphite», «carbon black», «acetylen black» в случае композита LiFePO₄/C (смесь компонентов), лучшие показатели получены для graphite [11]. Критериями оценки качества катодного материала служат значения сопротивления омических потерь R_{Ω} и переноса заряда R_{ct} , которые минимальны для graphite. Общая электропроводность G в этом случае изменяется [11] от 10⁻⁹ См⁻см⁻¹ для LiFePO₄ до 10⁻²-10⁻⁴ См^{-см⁻¹} для LiFePO₄/C. Величины R_{Ω} и R_{ct} получены из данных импедансной спектроскопии [11].

Наиболее объективные данные об электронной проводимости и скорости диффузии Li⁺ в LiFePO₄ дает импедансная спектроскопия. На рис. 4 приведено изменение формы графиков годографа импеданса Z'', Z' за период 50-ти заряд - разрядных циклов для двух материалов одинаковой дисперсности (≈50 нм) без и с комбинированным (CuO + C)-покрытием [10].

Видно, что транспортные свойства материала для частиц с покрытием стабилизируются после 10-и циклов, что отражается сближением точек пересечения дуг Z'Z'' с осью Z' (рис. 4).

Рис. 4. Спектр импеданса Z катода (графики Z^I, Z^{II}) при 2.5 В для материалов: LiFePO₄/C (a), CuO:LiFePO₄/C (b), полученные после n-го цикла заряд-разряд (значения n указаны над кривыми Z^I, Z^{II}).

Допированные структуры литированных фосфатов железа

Для увеличения быстродействия и стабильности циклирования катодного материала на основе LiFePO₄ обычно применяют его допирование ионами переходных металлов Mn, Cr, Ti, V, W, Ni, Co, Cu и анионами Cl⁻. Рассмотрим более подробно механизм допирования LiFePO₄ и влияние допанта на свойства катодного материала.

Замещение Fe²⁺ в кристаллической решетке LiFePO₄ катионами переходных металлов и некоторыми анионами создает в решетке дефекты, которые способствуют улучшению как проводимости, так и диффузионных процессов в катодном материале на основе LiFePO₄. Примеры наблюдаемых эффектов для катионов цинка и никеля [12, 13] приводятся ниже. На рис. 5 показано соотношение между активной составляющей импеданса Z' для электродов из LiFePO₄ (1) и LiZn_{0,01}Fe_{0,99}PO₄ (2) и обратным квадратным корнем из частоты ($\omega^{-1/2}$) в низкочастотном диапазоне.

По этим графикам были рассчитаны коэффициенты диффузии недопированного и допированного цинком LiFePO₄. Они оказались равными 9.98 10⁻¹⁴ и 1.58 10⁻¹³ см²/с, соответственно, т. е. допирование несколько увеличивает коэффициент диффузии ионов лития за счет так называемого «pillar»-эффекта в кристаллической решетке. Коэффициенты диффузии лития в LiFePO₄ с углеродным покрытием заметно возрастают, поскольку интеркаляция и деинтеркаляция - также Red/Ox-процессы [14]. Этот вывод подтверждается данными рис. 6, где приведена обработка в виде зависимости пика тока от скорости сканирования потенциала.

На заряд-разрядных кривых электрода LiFePO₄/С после допирования его ионами Cl⁻ существенно возрастает зарядная емкость. Вольтамперограммы имеют острые пики окисления - восстановления; после допирования хлором пики тока восстановления увеличиваются от 0.412 до 0.692 A/г. Разность потенциалов между пиками окисления и восстановления уменьшаются от 0.214 до 0.174 B, что свидетельствует об улучшении обратимости процесса. Отмеченное улучшение электродной кинетики согласуется с направлением изменения скорости процессов переноса тока и лития после допирования хлором: электропроводность LiFePO₄ увеличивается с

 $8.51 \ 10^{-3} \ \text{См} \cdot \text{см}^{-1}$ до $1.01 \ 10^{-2}$ См см⁻¹, коэффициент диффузии ионов Li⁺ увеличивается с $5.55 \ 10^{-10} \ \text{см}^2$ /с до $1.05 \ 10^{-9} \ \text{сm}^2$ /.

Рис. 5. Зависимости активной составляющей импеданса Z от частоты $\omega^{-1/2}$ для электродов из LiFePO₄ (1) и LiZn_{0,01}Fe_{0,99}PO₄ (2).

Рис. 6. Зависимость высоты пика анодного тока от скорости сканирования (v, B/c) потенциала для электрода из LiNi_{0,02}Fe_{0.98}PO₄/C.

Важным преимуществом получаемого катодного материала (LiFePO₄) перед коммерческим (LiCoO₂) является безопасность его работы при высоких температурах. На рис. 7 приведено сравнение электрохимических характеристик электрода при температурах, отличающихся от комнатной [15].

Рис. 7. Влияние температуры (10-60 °C) на процессы заряда-разряда электрода на основе нанокристаллического LiFePO₄: заряд-разрядные кривые C, E (a); зависимости пика катодного тока от скорости сканирования потенциала I_k, v^{0,5} (б) и спектры электрохимического импеданса Z^I, Z^{II} (в).

Видно (рис. 7 а), что до 60 0 С заряд-разрядные характеристики не искажены и показывают рост емкости электрода. Из анализа катодных пиков ЦВА (рис. 7, б) и годографа импеданса (рис. 7, в) следуют важные выводы: скорости межфазного переноса электрона и диффузии лития увеличиваются с ростом температуры. Увеличение зарядной емкости с температурой свидетельствует, что можно более рационально использовать объем электродного материала для диффузии лития (вблизи центра частиц LiFePO₄). С ростом температуры увеличивается электронная проводимость электродного материала, что видно на рис. 7, в по сдвигу годографа импеданса.

Электродный материал, получаемый в расплаве LiNO₃ - композит с углеродом и частично замещенным железом на хром в решетке оливина, имеет также хорошие и стабильные электрохимические характеристики.

Так, на кривой ЦВА (рис. 8, а) видны острые анодный и катодный пики, почти совпадающие с пиками окисления и восстановления. Емкость электрода (рис. 8, б) характеризуется постоянством и воспроизводимостью при длительном циклировании.

Рис. 8. Циклическая вольтамперограмма (а) катода на основе синтезированного в нитратном расплаве композита LiCr_xFe_{1-x} PO₄/C (содержание хрома 0,6 мол %), 0,1 мB/c; зависимость емкости (б) этого же катода от продолжительности циклирования при гальваностатическом разряде токами со скоростью C/5 (1), 1C (2), 3C (3).

Заключение

Существующие методы синтеза LiFePO₄, исключая твердофазный, близки по сложности и трудоемкости, содержанию примесей в конечном продукте и ограниченности выбора прекурсоров. С их помощью может быть получен только аморфный нанодисперсный порошок LiFePO₄ с широкой гистограммой распределения частиц по размерам. Микроэмульсионный метод (синтез в среде высших спиртов при t<200 °C) предпочтителен при получении осадков сложной формы и преимущественно монодисперсных. Перспективен также среднетемпературный синтез (до 400 °C) в расплаве LiNO₃. В этом случае возможно получение в одну стадию нанодисперсных кристаллических осадков (10 - 50 нм) без мешающих примесей оксидных и фосфидных фаз; при этом удается избежать дополнительной операции - высокотемпературной термообработки. Этим же методом можно получать замещенные (Fe на Cr или Mn) формы оливина LiFe_{1-x}M_xPO₄ и их композиты с углеродным материалом.

Формирование композита LiFePO₄/С путем введения в порошки LiFePO₄ углеродсодержащего компонента или нанесения углеродного покрытия на зерно LiFePO₄ увеличивает макроэлектропроводность G композита, его разрядную емкость и обратимость электродного процесса. При этом необходимо найти компромисс, поскольку добавление углерода не только увеличивает G, но и уменьшает долю элекроактивного вещества.

Литература

- 1. Jeffrey W. Fergus. Recent developments in cathode materials for lithium ion batteries.// Journal of Power Sources.- 2010.-V.195.-P. 939–954.
- A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho olivines as Positive Electrode Materials for Rechargeable Lithium Batteries.// J. Electrochem. Soc. - 1997.-144.-P. 1188-1194.
- 3. Kinetic study on low-temperature synthesis of LiFePO₄ via solid-state reaction.// Hao-Hsun Chang, Chun-Chih Chang, Hung-Chun Wu, Zheng-Zhao Guo, and others- Journal of Power Sources.- 2006.-V. 158.-P. 550–556.
- W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac ,M. Molenda, R. Dziembaj, J. Molenda. Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion Batteries.// Journal of Power Sources. - 2007 - V. 173 - P. 700–706
- С. М. Малеваный, П. Г. Нагорный, Э. В. Панов. Синтез в солевых расплавах проводящих структур фосфатов подгруппы железа и их электродные свойства.// Тези доповідей XVIII Української конференції з неорганічної хімії, м. Харків, 27 червня - 1 липня 2011 року.-С. 47.
- 6. С. М. Малеваный, Э. В. Панов. Синтез у сольових розплавах та електрохімічні властивості нанопорошку LiFePO₄.// Вопросы химии и химической технологии.-2011.-№4, том 2.-С. 47-49.

- 7. Электрохимические свойства проводящих структур фосфатов подгруппы железа/ Э. В. Панов, С. М. Малеваный, Ю. А. Тарасенко, Н. Т. Картель.// Вопросы химии и химической технологии.-2011.-№4, том 2.-С. 111-115.
- 8. Synthesis and characterization of high-density LiFePO₄/C composites as cathode materials for lithium-ion Batteries.// Zhao-Rong Chang, Hao-Jie Lv, Hong-Wei Tang and others Electro-chimica Acta. 2009.-V. 54 -P. 4595 4599.
- Jing Liu, JiaweiWang, Xuedong Yan, Xianfa Zhang, Guiling Yang, Abraham F. Jalboutc, RongshunWang. Long-term cyclability of LiFePO₄/carbon composite cathode material for lithium-ion battery applications.// Electrochimica Acta. - 2009. - V. 54. - P. 5656–5659.
- Yan Cui, Xiaoli Zhao, Ruisong Guo. Enhanced electrochemical properties of LiFePO₄ cathode material by CuO and carbon co-coating.// Journal of Alloys and Compounds. 2010. V. 490. P. 236–240.
- Ho Chul Shin, Won Il Cho, Ho Jang. Electrochemical properties of carbon-coated LiFePO₄ cathode using graphite, carbon black, and acetylene black. // Electrochimica Acta. 2006.-V.52 - P.1472–1476
- H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu. Doping effects of zinc on LiFePO₄ cathode material for lithium ion batteries.// Electrochemistry Communications. - 2006. - V. 8. - P. 1553–1557
- Yang Lu, Jichen Shi, Zaiping Guo, Qingsong Tong, Weijing Huang, Bianyun Li. Synthesis of LiFe1-xNixPO₄/C composites and their electrochemical performance// Journal of Power Sources. - 2009. - V. 194. - P. 786–793.
- 14. Synthesis of LiFePO₄ with fine particle by co-precipitation method.// K. S. Park, K. T. Kang, S. B. Lee and others. Materials Research Bulletin.- 2004.-V. 39.-P. 1803-1810.
- Masaya Takahashi, Shin-ichi Tobishima 1, Koji Takei, Yoji Sakurai. Reaction behavior of LiFePO₄ as a cathode material for rechargeable lithium batteries.// Solid State Ionics. - 2002. -V. 148. - P. 283–289.

References

- 1. Jeffrey W. Fergus. Recent developments in cathode materials for lithium ion batteries.// Journal of Power Sources.- 2010.-V.195.-P. 939–954.
- A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho olivines as Positive Electrode Materials for Rechargeable Lithium Batteries.// J. Electrochem. Soc. - 1997.-144.-P. 1188-1194.
- 3. Kinetic study on low-temperature synthesis of LiFePO₄ via solid-state reaction.// Hao-Hsun Chang, Chun-Chih Chang, Hung-Chun Wu, Zheng-Zhao Guo, and others- Journal of Power Sources.- 2006.-V. 158.-P. 550–556.
- W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac, M. Molenda, R. Dziembaj, J. Molenda. Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion Batteries.// Journal of Power Sources. - 2007 - V. 173 - P. 700–706
- 5. S. M. Malyovanii, P. G. Nagornyi, E. V. Panov. Sintez u solyovuch rozplavach provodyashich structur phosphatov podgruppyi jeleza i ich electrodnyie svoistva .// Teziy dopovidey XVIII Ukrainskoiy konferencii z neorganichnoiy chimii, m. Charkiv, 27 chervnya 1 lyipnya 2011 roku.-C. 47.
- 6. S. M. Malyovanii, E. V. Panov. Sintez u solyovuch rozplavach ta electrochimichni vlastuvosti nanoporoshku LiFePO₄. // Voprosyi chimii I chimicheskoi technologii.-2011.-№4, tom 2.-C. 47-49.
- Elektrochemicheskie svoistva provodyashich structur fosfatov podgruppyi jeleza./ E. V. Panov, S. M. Malyovanyii, Yu. A. Tarasenko, N. T. Kartel.// Voprosyi chimii I chimicheskoi technologii.-2011.-Nº4, tom 2.-C.111-115.
- 8. Synthesis and characterization of high-density LiFePO₄/C composites as cathode materials for lithium-ion Batteries.// Zhao-Rong Chang, Hao-Jie Lv, Hong-Wei Tang and others Electro-chimica Acta. 2009.-V. 54 -P. 4595 4599.
- Jing Liu, JiaweiWang, Xuedong Yan, Xianfa Zhang, Guiling Yang, Abraham F. Jalboutc, RongshunWang. Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications.// Electrochimica Acta. - 2009. - V. 54. - P. 5656–5659.

- Yan Cui, Xiaoli Zhao, Ruisong Guo. Enhanced electrochemical properties of LiFePO₄ cathode material by CuO and carbon co-coating.// Journal of Alloys and Compounds. 2010. V. 490. P. 236–240.
- Ho Chul Shin, Won Il Cho, Ho Jang. Electrochemical properties of carbon-coated LiFePO₄ cathode using graphite, carbon black, and acetylene black. // Electrochimica Acta. 2006.-V.52 - P.1472–1476
- H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu. Doping effects of zinc on LiFePO₄ cathode material for lithium ion batteries.// Electrochemistry Communications. - 2006. - V. 8. - P. 1553–1557
- Yang Lu, Jichen Shi, Zaiping Guo, Qingsong Tong, Weijing Huang, Bianyun Li. Synthesis of LiFe1-xNixPO4/C composites and their electrochemical performance// Journal of Power Sources. - 2009. - V. 194. - P. 786–793.
- Synthesis of LiFePO₄ with fine particle by co-precipitation method.// K. S. Park, K. T. Kang, S. B. Lee and others. Materials Research Bulletin.- 2004.-V. 39.-P. 1803-1810.
- Masaya Takahashi, Shin-ichi Tobishima 1, Koji Takei, Yoji Sakurai. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries.// Solid State Ionics. - 2002. -V. 148. - P. 283-289.

Поступила в редакцию 15 июня 2012 г.

Е. В. Панов, С. М. Мальований, Ю. О. Тарасенко, М. Т. Картель. Синтез та властивості катодного матеріалу – літійованого фосфату заліза для літій-іонного акумулятора.

Показані можливості регулювання електрохімічних властивостей катодного матеріалу - LiFePO₄ - шляхом вибору нових методів та умов його синтезу. Обговорюються оптимальні способи отримання нанокомпозиту LiFePO₄ з вуглецем, який краще проводить струм (механічна суміш компенентів або покриття на зернах LiFePO₄), а також методи покращення зворотності електродного процесу (піки на ЦВА 3,3/3,5В), стабільності цикліювання катоду, досягнення високих зарядних характеристик (до 150 мАч/г) шляхом допування композиту LiFePO₄/C катіонами перехідних металів Mn, Cr, Ni, Zn та ін., та аніонами Cl⁻.

Ключові слова: нанокомпозит LiFePO₄/C, синтез і допування катіонами перехідних металів та CI⁻, властивості і характеристики катоду.

E. V. Panov, S. M. Malyovanyi, Yu. A. Tarasenko, N. T. Kartel. Synthesis and properties of cathode material, lithiated iron phosphate, for lithium-ion batteries.

Possibilities of changing the electrochemical properties of a cathode material (LiFePO₄) by changing methods and conditions for its synthesis are shown. The optimal methods for the preparation of the nanocomposite LiFePO₄ with conducting carbon (mechanical mixture of ingredients or coating on LiFePO4 grains) and ways of improving the reversibility of the electrode process (peaks on cyclic voltammograms 3,3/3,5 V) and cathode cycling stability, achieving good charge characteristics (up to 150 mAh/g) by doping LiFePO₄/C composite with transition metal (Mn, Cr, Ni, Zn) cations and Cl⁻ anions are discussed.

Key words: LiFePO₄/C nanocomposite, synthesis and doping with transition metal cations and Cl⁻ anions, properties and cathode characteristics.

Kharkov University Bulletin. 2012. № 1026. Chemical Series. Issue 21 (44).