ТЕОРЕТИЧЕСКАЯ ХИМИЯ

УДК 544.163.2 + 544.182.5

ТЕСТОВЫЕ РАСЧЕТЫ ПОЛЯРИЗУЕМОСТИ И ГИПЕРПОЛЯРИЗУЕМОСТИ В ЛОКАЛЬНОЙ π-ЭЛЕКТРОННОЙ ТЕОРИИ СВЯЗАННЫХ КЛАСТЕРОВ

© 2011 А. Б. Захаров, В. В. Иванов

Описаны расчеты новым локальным методом связанных кластеров с учетом однократных и двукратных возбуждений (cue-CCSD). Сравнения с результатами формально-точного метода полного конфигурационного взаимодействия, для систем включающих до 16 π-электронных центров, продемонстрировали значительную эффективность cue-CCSD в описании π-электронных поляризуемостей и гиперполяризуемостей.

Ключевые слова: локальная теория связанных кластеров, поляризуемость, гиперполяризуемость, *π*-сопряженные системы.

Введение

Продуктивная идея локальности эффектов электронной корреляции (ЭК), которая возникла еще в начале 80^{-тых} годов прошлого века [1,2], продолжает привлекать внимание квантовых химиков. Её реализация, в рамках теории связанных кластеров (Coupled Cluster, CC) [3,4], дает возможность проведения неэмпирических расчетов систем содержащих значительное число «тяжелых» атомов (см. например [5]). Определенная перспектива использования локальных подходов видится нам и в полуэмпирических расчетах. Так, адекватные *ab initio* описания дипольных статических поляризуемостей (П) и гиперполяризуемостей (ГП) протяженных сопряженных систем (полимеры, нанотрубки) остаются сложнейшей задачей современной квантовой химии, поскольку требуют не только точного учета ЭК, но и применения расширенных базисов, включающих поляризационные и диффузные функции. Поэтому использование полуэмпирических методов представляется оправданным, при условии, что волновая функция достаточно точно учитывает эффекты ЭК.

Вышеупомянутая теория CC, реализованная нами в рамках полуэмпирической лэлектронной схемы [6], подтвердила точность метода в проблеме расчетов П и ГП различных сопряженных систем (гамильтониан Попла-Паризера-Парра, ППП). Цель настоящей работы – тестирование локального подхода к л-электронной теории CC, который был предложен нами недавно [7].

СUE-модель локальных корреляционных эффектов

К настоящему времени было сформулировано множество стратегий локализации молекулярных орбиталей (МО) и формирования конфигурационного состава многоэлектронной волновой функции (см. например [8] и соответствующие ссылки). Все они, так или иначе, связаны с преобразованием набора *занятых* МО:

$$\left| \boldsymbol{\Phi}_{j}^{loc} \right\rangle = \sum_{k} \left| \boldsymbol{\phi}_{k}^{deloc} \right\rangle \boldsymbol{U}_{kj} , \qquad (1)$$

где матрица *U* формирует унитарное «перемешивание» исходных, обычно хартри-фоковских (HF), орбиталей ($|\phi_k^{deloc}\rangle$). Полученные в результате (1) локализованные орбитали $|\phi_j^{loc}\rangle$ сосредоточены на небольшом числе непосредственно связанных атомов. Одна из наиболее эффективных схем построения таких орбиталей реализована в процедуре Пипека и Мезея [9].

Следует отметить, что процедуры локализации требуют проведения первичного HF расчета делокализованных MO. Однако, при исследовании фрагментов сопряженных полимеров и нанотрубок, проведение такого расчета может сопровождаться плохой сходимостью итерационного процесса, поскольку щель между верхней занятой и нижайшей вакантной MO, часто оказывается малой. Кроме того, и сама процедура локализации может проявлять плохую сходи-

мость. Немаловажен также тот факт, что локализация может нарушать химическую интерпретацию, например, смешивая π– и σ– орбитали в квазиплоских системах.

Предложенный нами подход [7] лишен указанных недостатков. Одноэлектронным базисом является набор орбиталей несвязанных молекул этилена (covalent unbonded ethylenes, CUE), который описывает систему двойных связей сопряженной молекулы. Такие, строго локализованные МО, формируют соответствующий детерминант ($|0\rangle$) – референсное состояние, относительно которого строятся электронно-возбужденные конфигурации. Реализация нашего подхода в рамках теории CC, включающей однократные и двукратные возбуждения (cue–CC singles and doubles, cue-CCSD), с волновой функцией

$$|\Psi_{cue-CCSD}\rangle = \left(l + T_1 + T_2 + \frac{1}{2}T_1^2 + T_1T_2 + \frac{1}{2}T_2^2 + ...\right)|0\rangle,$$
(2)

означает, что операторы T_1 и T_2 , а также их произведения (T_1T_2 , T_2^2 и т. д.) осуществляют возбуждения внутри и между двойными связями, которые строго локализованы в соответствующих позициях (см. пример на рис. 1).

Рис. 1. Типы электронных возбуждений метода сue-CCSD в сопряженной системе.

В (2) оператор T_1 формирует суперпозиции однократных, а T_2 – суперпозиции двукратных возбуждений относительно $|0\rangle$. Амплитуды, собранные в соответствующие матрицы (t_1 и t_2) являются независимыми переменными метода.

Итак, все виртуальные возбуждения в сопряженной системе могут быть классифицированы на локальные (ℓ =1), на переходы между двумя соседними фрагментами (ℓ =2), через фрагмент (ℓ =3) и т.д (рис.1). Ограничиваясь возбуждениями определенного типа можно получить соответствующие приближения. Мы будем обозначать их сие_(m)-CCSD, подразумевая при этом учет всех возбуждений в интервале (ℓ =1 ÷ m). В случае, когда все возможные возбуждения учитываются в волновой функции (2), метод обозначается как сue-CCSD.

Необходимо отметить, что в предлагаемом нами методе указанные ограничения касаются только оператора T_2 , но не T_1 ! Учет всех возможных однократно-возбужденных конфигураций в экспоненциальной форме обеспечивает соответствующую релаксацию референсного состояния. Мерой такой релаксации может служить норма матрицы амплитуд однократно-возбужденных конфигураций $\|t_1\|$. Вклады двукратно-возбужденных конфигураций, которые

характеризуются соответствующей нормой амплитудной матрицы $||t_2||$, вместе с $||t_1||$, описывают всю совокупность корреляционных эффектов.

Важным достоинством метода сue_(m)-CCSD является значительное уменьшение вычислительных затрат, связанных с преобразованием двухэлектронных интегралов, и вычислением нелинейных компонент уравнений СС.

Тестовые примеры

В приведенных ниже примерах мы проводим сравнения нашего варианта локальной теории CC с результатами метода полного конфигурационного взаимодействия (Full Configuration Interaction, FCI [10]). Представлены сравнительные CC и FCI данные для сопряженных углеводородов, содержащих до 16 π -электронных центров (более 83–х миллионов конфигураций FCI). Приведены данные о точности учета ЭК в приближенных моделях, средних П $\langle \alpha \rangle$ и вторых ГП

 $\langle \gamma \rangle$. Последние величины рассчитывались методом конечного поля [11]. Методика CCSD расчета кратко описана в [6,7].

В π -электронных расчетах мы использовали идеализированную геометрию: длина всех –С– С– связей равна 1.4 Å, а углы для линейных полиенов – 120°. Циклополиены и циклы конденсированных углеводородов описывались как правильные многоугольники. Параметризация ППП гамильтониана также стандартная: резонансный интеграл пары связанных атомов равен – 2.274 эВ, одноцентровый кулоновский интеграл равен $\Gamma_0 = 11.13$ эВ. Двухцентровые кулоновские интегралы оценивались по известной формуле Оно.

Линейные и циклические полиены. Для коротких полиенов в транс-форме данные об учете энергии ЭК представлены в табл. 1. Для сравнения приведены также данные для метода MP2 (теория возмущений второго порядка, Møller-Plesset). Как видим, даже низший уровень локальной СС теории (сие₍₁₎-CCSD) учитывает значительную долю корреляционной энергии. Включение возбуждений связывающих пары соседних этиленовых фрагментов (двойных связей) в методе сие₍₂₎-CCSD значительно увеличивает долю учета энергии корреляции. Уже в методе учитывающем возбуждения между четырьмя фрагментами результаты расчета энергии ЭК оказываются достаточно близкими к точному методу сие.

Таблица 1. Точность учета энергии корреляции в линейных полиенах C_NH_{N+2} (% относительно FCI). В последней строке приведены удельные энергии электронной корреляций метода FCI (на атом, эВ). Метод N

метод	18							
	6	8	10	12	14	16		
MP2	38.5	38.9	39.3	39.5	39.8	39.9		
cue ₍₁₎ -CCSD	68.2	62.7	59.1	56.6	54.8	53.5		
cue ₍₂₎ -CCSD	93.2	89.2	86.4	84.5	83.1	82.0		
cue ₍₃₎ -CCSD	99.2	97.2	95.6	94.4	93.5	92.8		
cue ₍₄₎ -CCSD	99.2	98.6	97.7	97.1	96.4	96.0		
cue-CCSD	99.2	98.6	98.1	97.8	97.3	97.1		
CCSD	99.4	98.9	98.3	97.9	97.6	97.3		
FCI	0.1805	0.1832	0.1852	0.1867	0.1879	0.1888		

Любопытно, что структура волновой функции при переходе от сue₍₁₎-CCSD к сue₍₄₎-CCSD достаточно быстро стабилизируется (табл. 2). В таблице приведены эвклидовы нормы $\|\cdot\|_2$ амплитудных матриц возбуждений соответствующих кратностей, а также максимальный по модулю элемент амплитудной матрицы $t_1 - \|t_1\|_{max}$. Напомним, что референсное состояние $|0\rangle$, согласно (2), всегда дает вклад в волновую функцию равный единице. Несмотря на то, что референсное состояние достаточно «далеко» от хартри-фоковского, вклад $\|t_1\|_{max}$ довольно мал. Отметим, что значительное расширение π -системы (переход к полиену $C_{36}H_{38}$) не приводит к существенному ухудшению структуры волновой функции ограниченных локальных моделей. При этом, отношение норм $\|t_1\|_2 / \|t_2\|_2$, уже начиная с сue₍₂₎-CCSD, оказывается близким к точной модели сue. Таким образом, основная доля двукратных возбуждений учтена на уровне модели с переходами между ближайшими соседями.

	$C_{16}H_{18}$				$C_{36}H_{38}$			
Метод	$\left\ \mathbf{t}_{1}\right\ _{2}$	$\ \mathbf{t}_1\ _{\max}$	$\left\ \mathbf{t}_{2}\right\ _{2}$	$\left\ \mathbf{t}_{1}\right\ _{2}/\left\ \mathbf{t}_{2}\right\ _{2}$	$\left\ \mathbf{t}_{1}\right\ _{2}$	$\ \mathbf{t}_1\ _{\max}$	$\left\ \mathbf{t}_{2}\right\ _{2}$	$\left\ \mathbf{t}_{1}\right\ _{2}/\left\ \mathbf{t}_{2}\right\ _{2}$
cue ₍₁₎ -CCSD	0.610	0.159	0.471	1.30	0.958	0.159	0.699	1.37
cue ₍₂₎ -CCSD	0.667	0.174	0.594	1.12	1.045	0.174	0.893	1.17
cue ₍₃₎ -CCSD	0.708	0.183	0.635	1.11	1.113	0.183	0.963	1.16
cue ₍₄₎ -CCSD	0.722	0.187	0.646	1.12	1.141	0.187	0.984	1.16
cue-CCSD	0.729	0.188	0.649	1.12	1.157	0.189	0.992	1.17

Таблица 2. Нормы амплитудных матриц t_1 и t_2 для молекул линейных полиенов

Иллюстрацией этого обстоятельства могут служить величины предложенного нами «индекса эффективности» локальной модели:

$$\eta_m = S_D(m) / N_D(m) \,. \tag{3}$$

Здесь $S_D(m)$ – вес двукратно–возбужденных конфигураций, соответствующих возбуждениям $\ell = 1 \div m$ в полной волновой функции сue-CCSD. А $N_D(m)$ – доля этих конфигураций среди общего числа конфигураций полного метода cue-CCSD. Тогда оценка параметров η_m различных cue_(m)-CCSD моделей для полиена C₁₆H₁₈ имеет вид:

m	1	2	3	4	5	6	7	8
M_m	8	64	220	500	892	1348	1784	2080
$S_D(m), \%$	71.25	94.22	99.01	99.83	99.97	99.99	99.99	100
$\eta_{\rm m}$	185.3	30.6	9.4	4.2	2.3	1.5	1.2	1

Во второй строке (M_m) указано общее число двукратно возбужденных конфигураций, соответствующих модели сие_(m). Из приведенных величин η_m , $S_D(m)$ и M_m можно сделать вывод о высокой эффективности нижайших уровней теории (m = 1 – 4). Большие величины η_m для этих методов говорят о том, что бо́льшая часть волновой функции сосредоточена на ме́ньшем числе конфигураций !

Обратимся теперь к расчету П и вторых ГП полиенов. Эти величины являются наиболее чувствительными к точности учета ЭК. В табл. 3 представлены соответственные величины для двух линейных полиенов. Кроме стандартной CCSD схемы, здесь приведены также результаты так называемого *нерелаксированного* варианта расчета электрических свойств (u-CCSD, см. [6]). Разумеется, абсолютные значения характеристик, рассчитанных в некой эффективной схеме полуэмпирической теории, могут не совпадать, как с экспериментальными величинами, так и с величинами, полученными в более точной расчетной схеме. Характерными, однако, являются соответствующие изменения поляризуемостей при переходе от $C_{14}H_{16}$ к $C_{16}H_{18}$: $\delta\langle\alpha\rangle = \langle\alpha\rangle_{C_{16}H_{18}} - \langle\alpha\rangle_{C_{16}H_{16}}$ и $\delta\langle\gamma\rangle = \langle\gamma\rangle_{C_{16}H_{18}} - \langle\gamma\rangle_{C_{14}H_{16}}$. Можно видеть, что методы HF и MP2 существенно завышают соответствующие изменения. При этом, все уровни теории (сие_(m)-CCSD) оказываются качественно верными при описании (гипер-)поляризуемостей, но низшие

уровни теории дают явно заниженные значения $\delta\langle\gamma\rangle$.

· · ·	· · /					
	$C_{14}H_{16}$		C	$_{16}H_{18}$	$\delta(\alpha)$	$\delta \langle \gamma \rangle / 10^6$
	$\langle \alpha \rangle$	$\left< \gamma \right> / 10^6$	$\langle lpha angle$	$\langle \gamma \rangle / 10^6$		
HF	298.8	2.41	388.4	4.75	89.6	2.34
MP2	265.1	2.80	343.8	4.72	78.7	1.92
cue ₍₁₎ -CCSD	162.0	0.58	193.7	0.76	31.7	0.18
cue ₍₂₎ -CCSD	129.3	0.46	153.7	0.61	24.4	0.15
cue ₍₃₎ -CCSD	141.4	0.69	168.9	0.91	27.5	0.22
cue ₍₄₎ -CCSD	159.0	1.12	192.1	1.53	33.1	0.41
cue ₍₅₎ -CCSD	170.4	1.58	208.5	2.25	38.1	0.67
cue ₍₆₎ -CCSD	175.4	1.88	216.7	2.80	41.2	0.93
cue-CCSD	176.7	1.98	220.6	3.18	43.9	1.20
u-CCSD	162.1	1.79	201.5	2.98	39.4	1.19
CCSD	142.7	1.39	170.2	1.88	27.5	0.49
FCI	156.6	1.66	193.4	2.72	36.9	1.05

Таблица 3. (Гипер-)поляризуемости линейных полиенов в различных многоэлектронных моделях (ат.ед.). $\delta \langle \alpha \rangle$ и $\delta \langle \gamma \rangle / 10^6$ – разности соответствующих свойств для указанных систем.

Тем не менее, именно меньшие значения $\delta \langle \alpha \rangle$ и $\delta \langle \gamma \rangle$ являются физически обоснованными поскольку в пределе, при N $\rightarrow \infty$, удельная (гипер-)поляризуемость полиенов должна стремится к постоянной величине. Это обстоятельство будет описано нами подробно на примере полимерных систем (полиены, полиацены, полиины и фрагменты нанотрубок) в следующей публикации.

Результаты расчетов некоторых 4n и 4n+2 циклических полиенов представлены в табл. 4. Отметим, что поскольку антиароматические (4n) циклы характеризуются вырожденными MO, референсные хартри-фоковские решения являются состояниями с нарушенной симметрией типа «волны зарядов» или «волны порядков связей». При этом, соответствующие расчеты П и ГП, для методов HF и MP2, могут быть некорректными. Поэтому мы приводим численные данные только для методов CC и FCI. В расчетах ГП, которые проведены разными методами, обнаруживаются некоторые различия, как в описании самих величин $\langle \gamma \rangle$, так и их изменений.

Действительно, для FCI расчетов 4n-циклов величина отношения ГП $\frac{\langle \gamma \rangle (C_{16}H_{16})}{\langle \gamma \rangle (C_{8}H_{8})}$ равна 22. В рас-

четах методом cue-CCSD она равна 26, а для u-CCSD – 22.7.

Согласно данным табл. 4. расчеты 4n+2 сопряженных циклов обнаруживают большие различия между методами MP2 и HF с одной стороны, и методами FCI и CCSD, с другой.

			(ar.e,	<u>4.).</u>						
Система	Свойство	HF	MP2	cue-CCSD	u-CCSD	CCSD	FCI			
	4n циклополиены									
C ₈ H ₈	$\langle \alpha \rangle$	-	_	31.18	33.00	32.87	33.00			
C ₁₆ H ₁₆	$\langle \alpha \rangle$	_	_	154.07	143.66	140.06	139.65			
C ₈ H ₈	$\langle \gamma \rangle / 10^5$	—	—	0.15	0.14	0.81	0.12			
C ₁₆ H ₁₆	$\langle \gamma \rangle / 10^5$	-	_	3.85	3.18	4.90	2.64			
	4n+2 циклополиены									
C ₆ H ₆	$\langle \alpha \rangle$	25.94	25.74	25.06	24.58	24.40	24.30			
$C_{14}H_{14}$	$\langle lpha angle$	161.59	161.06	141.16	139.48	133.81	131.78			
C ₆ H ₆	$\langle \gamma \rangle / 10^4$	0.084	0.090	0.274	0.247	0.438	0.349			
$C_{14}H_{14}$	$\langle \gamma \rangle / 10^4$	0.328	0.419	34.54	23.71	28.11	24.50			

Таблица 4. (Гипер-)поляризуемости циклических полиенов в различных многоэлектронных подходах (ат.ед.).

В связи с изучением полиенов любопытно было сравнить их со структурно-близкой системой – фрагментом молекулы полидиацетилена (ПДА) содержащим 16 π-электронов, C₁₀H₆:

Тройные связи этой системы моделировались согласно [12]. Расчеты FCI и сue-CCSD проявили относительно низкие величины П и ГП в сравнении с изо- π электронным аналогом – полиеном C₁₆H₁₈, но довольно близкие значения к полиену содержащему то-же число π углеродных центров C₁₀H₁₂ (табл.5).

|--|

	1			
Свойство	метод	C ₁₆ H ₁₈	$C_{10}H_{12}$	$C_{10}H_6$
$\langle \alpha \rangle$	FCI	191.3	90.11	101.82
	u-CCSD	201.5	92.04	97.23
	cue-CCSD	220.6	98.01	100.02
$\langle \gamma \rangle / 10^6$	FCI	2.72	0.45	0.42
	u-CCSD	2.98	0.46	0.40
	cue-CCSD	3.18	0.53	0.44

Конденсированные углеводороды. Эти соединения интересны прежде всего потому, что их можно интерпретировать как элементарные фрагменты углеродных нанотрубок. Сравнения приближенных расчетов с результатами FCI позволяют оценить адекватность предложенных моделей. Рассмотрим вначале молекулу пирена (рис. 2, структура А). Для этой системы возможны несколько способов расстановки двойных связей соответствующих симметриям C_{2v} и C_{2h} . Расчеты П (табл. 6) показали довольно близкие результаты для сue-CCSD методов основанных на этих референсных состояниях, однако точности описания ГП заметно различаются.

				- / 1 (
Метод	$\langle \alpha \rangle$	$\Delta \langle lpha angle$	$\left< \gamma \right> / 10^4$	$\Delta\langle\gamma angle$
HF	109.02	11.5	2.43	-65.9
MP2	106.32	8.8	3.77	-47.1
cue-CCSD (C_{2v})	103.09	5.5	7.53	5.6
cue-CCSD (C_{2v})	101.97	4.3	8.30	16.4
cue-CCSD (C_{2h})	101.73	4.1	7.22	1.3
u-CCSD	99.58	1.9	6.95	-2.5
CCSD	97.22	-0.5	7.10	-0.4
FCI	97.74	-	7.13	_

Таблица 6. Значения поляризуемостей и гиперполяризуемостей молекулы пирена (структура A), а также ошибки (Δ , %) относительно метода FCI (ат.ед.).

Тем не менее, есть основания считать, что в протяженных конденсированных системах различия в результатах расчетов при различных способах расстановки двойных связей, повидимому, будут мене значительны.

Рис. 2. Конденсированные углеводороды

Результаты расчетов для структур В, С, D и E собраны в таблице 7. Общий вывод состоит в том, что величины средних П заметено завышены для методов HF и MP2 в сравнении с результатами CC и FCI. В то же время, величины $\langle \gamma \rangle$, в методах HF и MP2, оказываются заниженными. При переходе к протяженным системам, приходится ожидать, что эти различия будут еще более существенными.

В заключение этого параграфа отметим принципиальную сложность в создании аддитивных схем описания Π, и особенно ГП, π-сопряженных систем. Так, молекулу кекулена (С48H24, структура F на рис. 2) можно представить как три структуры «В». Таким образом, получаем cue-CCSD: $\langle \alpha \rangle \approx 3 \cdot 106.5 = 319.5$, грубую оценку Π И ΓП в методе $\langle \gamma \rangle \approx 3 \cdot 1.71 \cdot 10^5 = 5.13 \cdot 10^5$ (всё в ат. ед.). Непосредственный сие-CCSD расчет (гипер-)поляризуемостей дает величины $\langle \alpha \rangle = 400$ и $\langle \gamma \rangle = 10^6$. Аналогичные расчеты для молекулы фуллерена С₆₀ обнаружили ошибку аддитивного подхода (С₆₀ = шесть молекул нафталина) порядка 90 % для ГП.

Следует отметить также, что прямой (не локальный) CCSD расчет кекулена или фуллерена C_{60} на обычных (офисных) компьютерах не представляется возможным из-за значительных затрат машинного времени. Но метод сие_(m)-CCSD позволяет проводить расчеты систем содержащих сотни π -электронных центров не привлекая, для этого, значительных вычислительных мощностей.

Система	свойство	HF	MP2	cue-CCSD	u-CCSD	CCSD	FCI
В	$\langle lpha angle$	122.3	118.0	106.5	103.3	100.8	101.8
	$\langle \gamma \rangle / 10^5$	0.89	1.11	1.71	1.42	1.42	1.45
С	$\langle lpha angle$	116.0	112.0	104.4	104.3	102.1	101.7
	$\langle \gamma \rangle / 10^5$	0.24	0.41	0.85	0.79	0.82	0.84
D	$\langle lpha angle$	116.6	110.5	102.6	101.4	99.6	101.1
	$\langle \gamma \rangle / 10^5$	0.38	0.52	0.99	0.82	0.83	0.93
E	$\langle \alpha \rangle$	103.5	101.8	98.9	96.9	95.2	95.3
	$\langle \gamma \rangle / 10^5$	0.35	0.43	0.77	0.64	0.66	0.68

Таблица 7. Средние (гипер-)поляризуемости (ат.ед.) конденсированных углеводородов.

Заключение

Теоретические исследования протяженных π -сопряженных систем остаются сложнейшей задачей современной квантовой химии. Необходимость учета значительных эффектов ЭК требует использования достаточно «гибкой» волновой функции. Предлагаемая нами полуэмпирическая схема локальной теории CCSD представляется физически оправданным и перспективным подходом. Расчеты малых π -электронных систем продемонстрировали высокую точность метода сue-CCSD и возможность систематического уточнения результатов расчетов, в сочетании с относительно низкими вычислительными затратами.

Благодарности

Работа выполнена при финансовой поддержке Фонда фундаментальных, прикладных и поисковых научно-исследовательских работ ХНУ имени В. Н. Каразина (номер государственной регистрации 0111U006845).

Литература

- 1. Pulay P. // Chem. Phys. Lett. 1983. V. 100, № 2. P. 151.
- 2. Saebo S., Pulay P. // Ann. Rev. Phys. Chem. 1993. V. 44. P. 213.
- 3. Hampel C., Werner H. J. // J. Chem. Phys. 1986. V. 104, № 16. P. 6286.
- 4. Russ N. J., Crawford T. D. // Chem. Phys. Lett. 2004. V.400. P. 104.
- 5. Flocke N., Bartlett R. J. // J. Chem. Phys. 2003. V. 118, № 12. P. 5326.
- 6. Klimenko T. A., Ivanov V. V., Adamowicz L. // Mol. Phys. 2009.– V. 107, №17.– P. 1729.
- 7. Захаров А. Б., Иванов В. В.// Журн. Структур. Химии. 2011. Т. 52, № 4. С. 665.
- Knowles P., Schütz M., Werner H. J. // in book: Modern methods and Algorithms of Quantum Chemistry, proceedings, Ed. J. Grotendorst. – 2000. – P. 97.
- 9. Pipek J., Mezey P. G. // J. Chem. Phys. 1989. V. 90, № 9 P. 4916.
- 10. Лузанов А. В. // Теорет. и эксперим. химия. 1991. Т. 27, № 4. С. 413.
- 11. Педаш Ю. Ф., Иванов В. В., Лузанов А. В. // Теорет. и эксперим. химия. 1992. Т. 28, № 1. – С. 21.
- 12. Иванов В. В., Лузанов А. В. // Укр. хим. журнал. 1994. Т. 60, № 1.– С.11.

References

- 1. Pulay P. // Chem. Phys. Lett. 1983. V. 100, № 2. P. 151.
- 2. Saebo S., Pulay P. // Ann. Rev. Phys. Chem. 1993. V. 44. P. 213.
- 3. Hampel C., Werner H. J. // J. Chem. Phys. 1986. V. 104, № 16. P. 6286.
- 4. Russ N. J., Crawford T. D. // Chem. Phys. Lett. 2004. V.400. P. 104.
- 5. Flocke N., Bartlett R. J. // J. Chem. Phys. 2003. V. 118, № 12. P. 5326.
- 6. Klimenko T. A., Ivanov V. V., Adamowicz L. // Mol. Phys. 2009.– V. 107, №17.– P. 1729.
- 7. Zakharov A. B., Ivanov V. V. // Zhurnal Structur. Khimii. 2011. V. 52, № 4. P. 665.
- Knowles P., Schütz M., Werner H. J. // in book: Modern methods and Algorithms of Quantum Chemistry, proceedings, Ed. J. Grotendorst. – 2000. – P. 97.
- 9. Pipek J., Mezey P. G. // J. Chem. Phys. 1989. V. 90, № 9 P. 4916.
- 10. Luzanov A. V. // Theoret. i experim. khimia. 1991. V. 27, № 4. C. 413. [in Russian].
- 11. Pedash Yu. F., Ivanov V. V., Luzanov A. V. // Theoret. i experim. khimia. 1992.– V. 28, № 1. P. 21. [in Russian].
- 12. Ivanov V. V., Luzanov A. V. // Ukr. khim. zhurnal. 1994. V. 60, № 1. P.11. [in Russian].

Поступила в редакцию 22 июня 2011 г.

А.Б. Захаров, В.В. Іванов. Тестові розрахунки поляризовності та гіперполяризовності у локальній *л*-електронній теорії зв'язаних кластерів.

Описано розрахунки новим локальним методом зв'язаних кластерів з урахуванням однократних та двократних збуджень (cue-CCSD). Порівняння з результатами формально-точного методу повної конфігураційної взаємодії, для систем що включають до 16 π-електронних центрів, продемонстрували значну ефективність cue-CCSD в описі π-електронних поляризовностей і гіперполяризовностей.

Ключові слова: локальна теорія зв'язаних кластерів, поляризовність, гіперполяризовність, *п*-спряжені системи.

A. B. Zakharov, V. V. Ivanov. Test calculations of polarizability and hyperpolarizability in the local π -electron coupled cluster theory.

The calculations of new local coupled cluster method with the account of single and double excitations (cue-CCSD) have been described. The significant efficiency of cue-CCSD in the description of π -electronic polarizability and hyperpolarizability for the systems with 16 π -electron centers in comparison with the exact full configuration interaction results have been demonstrated.

Key words: Local coupled cluster theory, polarizability, hyperpolarizability, π -conjugated systems.

Kharkov University Bulletin. 2011. № 976. Chemical Series. Issue 20(43).