УДК 541.353.3

методов, согласуются.

АССОЦИАЦИЯ ИОНОВ ПИКРАТА И КАЛИЯ В АПРОТОННОМ РАСТВОРИТЕЛЕ: ИССЛЕДОВАНИЕ МЕТОДАМИ КОНДУКТОМЕТРИИ И СПЕКТРОФОТОМЕТРИИ

© 2010 И. Н. Пальваль, А. В. Лебедь, Н. О. Мчедлов-Петросян

В смешанном растворителе ацетон – *н*-бутилацетат с массовым соотношением 1 : 1 при 25 °С определены значения константы ассоциации пикрата с ионом K⁺ при помощи кондуктометрического и спектрофотометрического методов. Фореограмма успешно описывается в предположении одного равновесия (K⁺ + Pic⁻ \longleftrightarrow K⁺Pic⁻, $lg K_{ass}$ = 3.89 ± 0.04, Λ_0 = 112 ± 3 См·см²·моль⁻¹), причем гипотеза образования ионных тройников крайне незначительно улучшает описание экспериментальных данных. Хотя вследствие недостаточной разрешенности спектров поглощения свободного иона Pic⁻ и ионного ассоциата неопределенность в оценке константы равновесия из спектральных данных ($lg K_{ass}$ = 4.2 ± 0.3) существенно выше, но в целом результаты, полученные с использованием двух

Ключевые слова: пикрат калия, ионная ассоциация, смешанный растворитель, ацетон,

н-бутилацетат, кондуктометрия, спектрофотометрия, константа ионной ассоциации.

Настоящая работа продолжает исследование ассоциации аниона пикрата с катионами различной природы [1-4]. В предыдущих публикациях на примере пикрата тетра-*н*-бутиламмония в системах ацетон – *н*-бутилацетат и ацетон – *н*-гексан было показано, что в растворителях с относительной диэлектрической проницаемостью $\mathcal{E}_r < 7$ для описания кондуктометрических данных необходимо учитывать, наряду со свободными ионами и ионными парами (двойниками), также и ионные тройники.

Анион пикриновой кислоты был выбран нами не только в качестве иона с сильно делокализованным зарядом и потому не склонного к специфическим взаимодействиям, но и как один из анионов, способных изменять свой электронный спектр поглощения в результате взаимодействия с катионами. Давно уже было известно, что при взаимодействии с катионами металлов спектральные эффекты для пикрата значительны и даже позволяют оценивать константы ассоциации [5-10]. Нами также был продемонстрирован целый ряд подобных эффектов. В частности, было показано, что при взаимодействии с многозарядными катионами спектр пикрата приближается к спектру пикриновой кислоты [1, 3]. Причем эти результаты были получены как в апротонных, так и спиртовых средах.

С другой стороны, нами впервые было показано, что в апротонных средах даже при взаимодействии с катионом тетра-*н*-бутиламмония изменения спектра пикрата достаточны для оценки константы ассоциации [3]. Так, в смеси *н*-бутилацетата (БА) с ацетоном с массовым соотношением 3 : 1 при 25 °C было найдено значение $\lg K_{\rm ass} = 4.0 \pm 0.2$, в то время как при помощи кондуктометрического метода получено значение $\lg K_{\rm ass} = 4.00 \pm 0.03$ [3].

Для полноты картины представлялось необходимым определить константу ассоциации пикрата с катионом металла двумя методами в таком же или близком по составу растворителе. В качестве такого металла был выбран калий, так как в этом случае ассоциация отражается на спектре пикрата не намного сильнее, чем в случае тетра-*н*-бутиламмония. Для ионов Li⁺ и даже Na⁺ спектральные эффекты довольно значительны; опубликованы значения констант соответствующих ионных равновесий в различных растворителях [6-12]. Диссоциация пикрата калия (KPic) ранее изучалась также в связи с исследованиями комплексообразования иона K⁺ с краунэфирами в неводных средах [13, 14].

Для пикратов щелочных металлов известны работы, в которых для нахождения констант ассоциации ионов этих солей в различных растворителях использовали либо один метод, либо одновременно несколько, например, спектрофотометрический и кондуктометрический [5-15]. Значения констант ассоциации, полученные двумя этими методами, могут как совпадать, так и различаться. Возможное объяснение заключается в том, что кондуктометрический метод дает константу равновесия между свободными ионами и ионными парами, а спектрофотометрический – в зависимости от особенностей системы – позволяет отличить свободные ионы либо от всех типов ионных пар, либо только от контактных.

Имеющиеся в литературе спектрофотометрические данные для пикратов можно классифицировать следующим образом. Ассоциаты с водородной связью, $Pic^{-+}HNR_3$, поглощают не так, как свободные ионы Pic^- , спектры поглощения сольватно-разделенных пар $Pic^{-}_{solv.}$ $H^+_{solv.}$ отличаются от спектров молекул HPic, а спектры поглощения контактных пар Pic^-Na^+ отличаются от спектров свободных ионов [1, 3, 6, 7, 9, 10, 15-18].

Для определения константы ассоциации (K^+ + Pic⁻ \leftarrow K⁺Pic⁻) мы стремились выбрать смесь ацетона с БА в той области значений \mathcal{E}_r , где есть основания предполагать практическое отсутствие ионных тройников, и в то же время ассоциация ионов может быть зарегистрирована в удобном для точных измерений концентрационном диапазоне. При этом мы опирались на данные, полученные ранее для пикрата тетра-*н*-бутиламмония в этой же системе; в частности, при массовой доле ацетона 25 и 40 % равновесие успешно удается описать без привлечения модели ионных тройников [3].

Были проведены предварительные измерения электронных спектров поглощения КРіс в смесях ацетон – БА в диапазоне массовых долей ацетона от 25 до 60 %, при варьировании как состава растворителя, так и концентрации электролита. Типичные примеры представлены на рисунках 1 а и 16, соответственно. Полученные результаты подтверждают литературные данные [13] о различии спектров ионных ассоциатов К⁺Ріс⁻ и свободных ионов Ріс⁻. Все изменения в спектрах аналогичны эффектам, зарегистрированным в случае пикратов тетра-*н*-бутиламмония и тетраэтиламмония [1, 3], но носят несколько более выраженный характер.

Рис. 1. Спектры поглощения КРіс в смесях ацетон – *н*-БА: а) $C = 5.5 \times 10^{-4}$ M (19-20 °C): 1 – 30 % (масс.) ацетона; 2 – 35 %; 3 – 40 %; 4 – 45 %; × – 50 %; б) в смеси 50 % ацетона – 50 % *н*-БА (25 °C): $1 - c = 2.84 \times 10^{-6}$ M; $2 - c = 5.96 \times 10^{-4}$ M.

В итоге в качестве наиболее подходящей для исследования кондуктометрическим и спектрофотометрическим методами была выбрана смесь с массовым соотношением ацетон : БА = 1 : 1, для которой значение $\varepsilon_r = 12.64 (25 \text{ °C})$ было получено интерполяцией данных для системы ацетон – БА [3].

Экспериментальная часть

Синтез соли. Пикрат калия синтезировали путем нейтрализации пикриновой кислоты избытком (1.2 : 1) гидроксида калия в воде. Раствор выпаривали наполовину, охлаждали, отстаивали в течение 20-24 ч и осадок отфильтровывали, а затем высушивали и очищали перекристаллизацией из воды. Соль сушили в вакууме при 65-75 °C до постоянной массы. При нагревании до 300 °C соль не плавилась, а дальнейшее нагревание может, согласно литературным данным, приводить к взрыву. Плотность соли равна 1852 кг·м⁻³ [19].

Очистка растворителей проводилась с учетом имеющихся рекомендаций [20]. Ацетон очищали в несколько этапов: 1) перегоняли, собирая среднюю фракцию; 2) окисляли непредельные и ароматические примеси перманганатом калия в течение 7-10 дней; 3) очищали от непрореагировавшего КМпО₄, перегоняя и собирая среднюю фракцию; 4) осушали в течение 4-5 часов кипячением с безводным сульфатом магния; 5) перегоняли, собирая среднюю фракцию. БА квалификации "ч." осушали кипячением со свежепрокаленным MgSO₄ в течение 5-6 ч, за-тем подвергали перегонке, собирая среднюю фракцию. Чистоту растворителей контролировали по плотности и удельной электропроводности.

Плотность и кинематическую вязкость смеси 50 % ацетона – 50 % БА определяли при 25.0 °С по известной методике [21], используя пикнометры с капилляром типа ПЖЗ и стеклянный капиллярный вискозиметр типа ВПЖ-2. В качестве калибровочных жидкостей использовали свежеперегнанную дистиллированную воду, свежеочищенные ацетон, *н*-гексан и БА. Значение динамической вязкости $\eta = 0.4272 \times 10^{-3}$ Па·с рассчитывали из кинематической вязкости. Значение плотности смеси: $\rho = 828.7$ кг·м⁻³.

Приготовление растворов. Ввиду ограниченной растворимости КРіс в смесях ацетон – БА для приготовления исходного раствора соль сначала растворяли в ацетоне, добавляли БА до нужного массового соотношения, а затем – смешанный растворитель до необходимого объема. Из раствора в смеси 50 % ацетона – 50 % БА с концентрацией $c = 1 \times 10^{-2}$ М через 15-20 ч выпадают кристаллы соли, поэтому верхний концентрационный предел растворов был 8.85×10^{-3} М. При приготовлении растворов для спектрофотометрических и кондуктометрических исследований использовали соответственно объемный и весовой способы. Рабочие растворы получали последовательным разведением исходного. Спектры растворов измеряли в интервалах длин волн от 330 до 470 нм в смесях ацетон – БА с массовой долей ацетона 25, 30, 35, 40, 45, 50 и 60 %. Все растворы и растворители хранили в темном месте.

Аппаратура и методика измерений. Для измерения оптической плотности (A) использовали спектрофотометры СФ-46 и СФ-26 и снабженные крышками кюветы длиной 0.1 и 5 см (стеклянные) и 1 см (кварцевые); измеряемые значения оптической плотности были не ниже 0.1 и не выше 1.2. Измерения проводили против растворителя с учетом кюветной разницы. Неопределенность значений A: 0.005 ед. Термостатирование при 25.0 ± 0.5 °C проводили как на стадии приготовления рабочих растворов, так и при их исследовании. Предварительные измерения спектров для выбора состава смешанного растворителя (рис. 1а) проводили при 19–20 °C.

Сопротивление растворов измеряли с помощью автоматических цифровых мостов переменного тока P-5058 и GW Instek LCR-817. Измерения проводили при температуре 25.00 ± 0.05 °C на частоте 1000 Гц в контактных двухэлектродных ячейках. На электроды для уменьшения поляризационных эффектов был нанесен тонкий слой платиновой черни. Кондуктометрические ячейки предварительно калибровали по водным растворам хлорида калия с концентрацией (5–100)×10⁻⁴ М. При расчете постоянных ячеек использовали уравнение Бартеля [22]. При расчете учитывали поправку на электропроводность чистого растворителя. Неопределенность значений молярной электропроводности составляла (0.05–0.1) %.

Результаты и обсуждение

Кондуктометрическое исследование диссоциации пикрата калия

Данные по электропроводности растворов КРіс в смеси 50 % ацетона – 50 % БА приведены в таблице 1, а на рисунке 2 представлена фореограмма КРіс в указанной смеси. Кондуктометрическое исследование проводили по стандартной методике [23, 24]. При вычислении удельной и молярной (Λ_i) электропроводности учитывали проводимость растворителя. Обработку экспериментальных данных проводили, как и ранее, с использованием нелинейного метода наименьших квадратов путем многопараметровой минимизации по алгоритму Нелдера–Мида (симплекс) [25]. Основы метода описаны в [26, 27], а методика обработки – в [3]. В качестве уравнения электропроводности использовали уравнение Ли–Уитона [28-30].

$c \times 10^3 / M$	Λ / См см² моль -1	$\mathcal{C} \times 10^3$ / М Λ / См см 2 моль $^{-1}$	
0.030	93.76	0.903	39.72
0.034	93.06	0.905	38.35
0.056	85.63	1.478	32.11
0.060	83.16	1.508	33.17
0.107	75.28	2.144	29.28
0.108	72.41	2.228	27.85
0.162	67.21	3.463	23.84
0.176	64.37	3.463	23.84
0.291	55.33	4.621	22.23
0.295	57.00	4.689	21.68
0.421	49.69	5.907	20.32
0.425	50.34	5.965	20.22
0.571	46.32	7.180	19.09
0.573	45.36	7.391	18.89
0.730	42.52	8.714	18.23
0.739	42.67	8.852	17.40

Таблица 1. Зависимость молярной проводимости растворов КРіс от концентрации в смеси 50 % ацетона – 50 % БА при 25 °С

Рис. 2. Фореограмма КРіс в смеси 50 % ацетона – 50 % н-БА: • – экспериментальные данные; — данные, рассчитанные по модели 1 – 1 ассоциации; ---- данные, рассчитанные с использованием модели тройников.

На первом этапе обработку данных проводили в предположении образования только ионных пар. К оптимизируемым параметрам в этом случае относятся константа ассоциации K_{ass} , предельная молярная проводимость ионов Λ_0 и расстояние максимального сближения R. Также были проведены расчеты двух параметров (K_{ass} и Λ_0), а расстояние R задавали постоянным, варьируя значение в пределах 0.6 - 1.6 нм. Последние расчеты показывают, что значение параметра R пренебрежимо мало влияет на значения K_{ass} и Λ_0 , результат трехпараметрового расчета был принят как окончательный. Результаты этого и последующих расчетов сведены в таблице 2.

На следующем этапе обработку повторяли с учетом возможного образования ионных тройников. При этом принимали, что константы образования анионных и катионных тройников равны. К оптимизируемым параметрам в этом случае добавляли еще константу образования ионного тройника из иона и ионной пары K_T и величину предельной молярной проводимости тройников Λ_0^T . Необходимо заметить, что в нашем случае удалось провести такой одновременный расчет пяти параметров, хотя это является, скорее исключением, чем правилом. Для снижения числа оптимизируемых параметров мы ввели часто используемые [3] ограничения: параметр R был фиксирован (использовали то же значение, что и при расчете без тройников), а величину предельной молярной проводимости тройников принимали равной $\Lambda_0^T = 0.693\Lambda_0$ [12]. Результаты расчетов при обоих подходах очень хорошо согласуются.

смесях 50 % ацетона - 50 % БА lg K_T $\Lambda_0^T /$ См·см²·моль⁻¹ $\log K_{ass}$ $\Lambda_0 / C_M \cdot c_M^2 \cdot MOЛЬ^{-1}$ R/nmМодель 1-1 Ассоциация 3.88 ± 0.04 0.96 ± 0.2 112±3 $0.693 \Lambda_0 = 78.8$ Образование тройников 0.96 3.92±0.02 113.6±1.5 1.7±0.2 Образование тройников 3.91±0.02 113.7±2.0 1.8±0.2 80.5±2.5 0.75±0.4

Таблица 2. Константы ассоциации и предельные молярные проводимости КРіс в

Из полученных результатов можно заключить, что, с одной стороны, введение гипотезы образования ионных тройников существенно улучшает качество обработки экспериментальных данных. С другой стороны, содержание ионных тройников в растворах весьма невелико, и расчетные значения K_{ass} и Λ_0 совпадают в пределах погрешности как при учете образования тройников, так и без последнего. Например, при максимальной для спектрофотометрического эксперимента концентрации с = 7.5×10^{-4} М содержание тройников не превышает 1%. Если провести расчеты только для интервала концентраций, использованного в спектрофотометрии (см. ниже), то привлечение гипотезы ионных тройников приводит к неудовлетворительным погрешностям, а для модели 1 – 1 ассоциации результаты (K_{ass} и Λ_0) абсолютно идентичны таковым, полученным на всем концентрационном интервале с использованием модели, учитывающей также и наличие ионных тройников.

Спектрофотометрическое исследование диссоциации пикрата калия

Спектрофотометрическое определение значения K_{ass} осуществлялось по стандартной методике [31]. Из возможных равновесий учитывалось только образование ионных пар. Тогда, основываясь на выражении закона действия масс и втором приближении Дебая–Хюккеля для коэффициентов активности, получаем выражение для вычисления термодинамической константы ассоциации:

$$\lg K_{ass} = -\lg \left(\frac{1-\alpha}{\alpha^2 c}\right) + \frac{2A\sqrt{\alpha c}}{1+BR\sqrt{\alpha c}},\tag{1}$$

где *а* – степень диссоциации. При расчетах делали допущение, что коэффициенты активности ионных пар равны единице.

Электронные спектры поглощения рабочих растворов КРіс измеряли при четырех длинах волн: 385, 390, 395 и 400 нм в интервале концентраций от $c = 5.30 \times 10^{-6}$ до $c = 7.51 \times 10^{-4}$ М при 25 °C. Обработку результатов проводили, минимизируя сумму квадратов отклонений рассчитанных значений коэффициентов молярного поглощения (*E*) от экспериментальных при вы-

бранной длине волны. Расчетные значения *E* при данной концентрации *с* получали, используя зависимость:

Рис. 3. Аппроксимация экспериментальной зависимости коэффициента молярного поглощения пикрата калия при 385 нм от логарифма концентрации электролита.

 $E = (1 - \alpha) E_{ass} + \alpha E_{Pic} .$ ⁽²⁾

Здесь E_{ass} и E_{Pic} – коэффициенты молярного поглощения соответственно ионных пар K⁺Pic⁻ и свободных ионов Pic⁻. В качестве последних на основании предыдущего исследования [3] использовали значения для пикрата тетра-*н*-бутиламмония, измеренные при $c = (3.60-3.67) \times 10^{-5}$ M, поскольку для этой соли в данном растворителе lg $K_{ass} = 3.0$.

Оптимизируемыми параметрами являются значения $\lg K_{ass}$ и E_{ass} пикрата калия; значения α находятся итеративным решением уравнения (1). Результаты измерений и расчетов представлены в таблице 3; пример аппроксимации дан на рисунке 3. Полученные значения $\lg K_{ass}$ варьируют в пределах 4.17–4.25. Однако оценки погрешности аппроксимации дают

интервальное значение $\lg K_{ass} = 4.2 \pm 0.3$. При этом различие E_{Pic} и E_{ass} больше, чем в случае в случае пикрата тетра-*н*-бутиламмония [3], что согласуется с представлением о более сильном взаимодействии пикрата с ионом K⁺ по сравнению с большим органическим катионом.

$c \times 10^{5}$ / M	$E imes 10^{-3}$ / $\mathrm{M}^{-1}~\mathrm{cm}^{-1}$				
	$\lambda = 385$ нм	$\lambda = 390$ нм	$\lambda = 395$ нм	λ = 400 нм	
0.744	17.75	16.58	15.64	14.83	
2.188	17.40	16.24	15.19	14.56	
3.152	16.82	15.88	14.91	14.23	
3.282	16.88	15.66	14.86	14.22	
4.127	16.61	15.50	14.66	14.00	
4.203	16.66	15.58	14.65	14.06	
5.330	16.20	14.64	14.39	13.71	
8.254	15.94	14.87	14.28	13.63	
10.318	15.96	14.97	14.18	13.57	
10.421	15.92	15.17	14.38	13.65	
26.427	15.21	14.25	13.53	13.06	
27.347	14.98	14.00	13.40	12.93	
41.536	14.66	13.78	13.12	12.68	
45.378	14.44	13.58	12.99	12.57	
73.612	13.15	12.36	11.86	11.54	
75.149	13.45	12.71	12.22	11.91	
$E_{\it Pic}$ ×10 ⁻³ / ${ m M}^{-1}~{ m cm}^{-1}$	18.70	17.47	16.31	15.57	
$E_{ass} imes 10^{-3}$ / ${ m M}^{-1}~{ m cm}^{-1}$	11.6	10.9	10.8	10.7	
$\lg K_{ass}$	4.20	4.17	4.18	4.25	

Таблица 3. Зависимость коэффициентов молярного поглощения ($E \times 10^{-3}$ / M⁻¹ см⁻¹) растворов KPic от длины волны в смеси 50 % ацетона – 50 % БА при 25 °C

Таким образом, константы ассоциации, полученные двумя методами, в целом согласуются между собой.

Сравнение с литературными данными

Джилькерсон с сотр. [10, 11] при изучении поведения пикратов лития и натрия в 2пропаноле двумя методами получили практически одинаковые значения констант ассоциации: для NaPic кондуктометрическим методом $\lg K_{ass} = 3.65$, спектрофотометрическим – 3.63; для LiPic – 3.75 и 3.73 соответственно. На основании полученных данных авторы делают вывод, что спектроскопические методы дают такие же величины констант ассоциации, как и другие физические методы, хотя ранее при исследовании этих же и некоторых других пикратов в 2бутаноне ими были получены хуже совпадающие значения констант ассоциации [8, 9]. Ходжо с сотр. [12] для LiPic в ацетонитриле спектрофотометрическим методом было найдено значение константы ассоциации, также очень близкое к значению, полученному методом кондуктометрии ($\lg K_{ass} = 2.94$).

Нами были обработаны спектрофотометрические данные Джилькерсона и сотр. для пикрата натрия в 2-пропаноле [10] и 2-бутаноне [9] с использованием нашего алгоритма. Совпадение результатов было в пределах 0.01–0.04 единиц. Более значительными были расхождения средних значений в случае пикрата цезия в 2-бутаноне ($\lg K_{ass} = 2.6$ против 2.9 у Джилькерсона), что можно объяснить гораздо худшим разрешением полос поглощения пикрата и ионного ассоциата Cs⁺Pic⁻.

Кондуктометрические данные для КРіс в кетонах указывают на закономерное возрастание значения $\lg K_{ass}$ со снижением ε_r : $\lg K_{ass} = 2.46-2.54$ [13, 32] в ацетоне ($\varepsilon_r = 20.56$); 3.37 [9] в 2-бутаноне ($\varepsilon_r = 18.01$); в 4-метил-2-пентаноне 4.42 [33] ($\varepsilon_r = 12.92$). Таким образом, найденное нами при помощи кондуктометрии значение 3.89 в смеси ацетона с БА ($\varepsilon_r = 12.64$) хотя и следует общей тенденции, но все же заметно ниже значения, опубликованного Жилляром и Кольтгофом для изодиэлектрического растворителя. С другой стороны, недавно было показано [34], что значение $\lg K_{ass}$ пикрата тетра-*н*-бутиламмония в 4-метил-2-пентаноне в работе [33], по-видимому, завышено на 0.2–0.3 единицы.

Литература

- 1. Мчедлов-Петросян Н.О., Пальваль И.Н., Никифорова Е.М., Лебедь А.В. К вопросу об изменчивости электронного спектра поглощения пикрата в средах средней и низ-кой полярности // Вестник ХНУ. 2002. № 549, Вып. 8(31). С. 98-107.
- Пальваль И.Н., Никифорова Е.М., Лебедь А.В., Калугин О.Н., Мчедлов-Петросян Н.О. К вопросу о диссоциации пикрата тетра-*н*-бутиламмония в органических растворителях. Кондуктометрия в *н*-бутилацетате // Вестник ХНУ. – 2002. – №573, Вып. 9(32). – С. 162-169.
- Mchedlov-Petrossyan N.O., Palval I.N., Lebed A.V., Nikiforova E.M. Association of the picrate ion with cations of various nature in solvents of medium and low relative permittivity. An UV/Vis spectroscopic and conductometric study // J. of Mol. Liquids. – 2009. – V. 145, №3. – P. 158-166.
- Пальваль И. Н., Лебедь А. В., Мчедлов-Петросян Н.О. Ассоциация пикрата тетрабутиламмония в смесях ацетон – н-гексан. Материалы межд. конф. "Современные проблемы физической химии и электрохимии растворов". Харьков, 2009 г. – 147 с.
- 5. Kortüm G., Andrussow K. Über Ionendipole and Bjerrumsche Ionenpaare // Z. phys. Chem., N. F. 1960. Bd. 25, H. 5/6. S. 321-347.
- Измайлов Н.А., Гуревич Э.Л. Исследование равновесий в неводных растворах электролитов при помощи спектров поглощения. І. Пикриновая кислота и пикрат натрия в воде и в метиловом, этиловом и нормальном бутиловом спиртах // Оптика и спектроскопия. 1961. Т. Х, Вып. 1. С. 19-26.

- Измайлов Н.А., Гуревич Э.Л. Исследование равновесий в неводных растворах электролитов при помощи спектров поглощения. П. Пикриновая кислота и пикрат натрия в уксусной кислоте, пиридине, ацетонитриле и ацетоне // Оптика и спектроскопия. 1961. Т. Х, Вып. 6. С. 767-772.
- 8. Gilkerson W.R., Roberts A.M. A spectroscopic study of ion association. Lithium picrate in 2-butanone // J. Amer. Chem. Soc. 1980. V. 102, №16. P. 5181-5183.
- Gilkerson W.R., Kendrick K.L. Ion association. Comparison of spectroscopic and conductance values of association constants // J. Phys. Chem. 1984. V. 88, №22. –P. 5352-5359.
- Kendrick K.L., Gilkerson W.R. Ion association of lithium and sodium picrate in 2-propanol at 25 °C. II. Spectrophotometric measurements // J. Sol. Chem. – 1986. – V. 13, №13. – P. 253-258.
- Feng-chun H., Gilkerson W.R. Ion association of lithium bromide, chloride and picrate and of sodium picrate in 2-propanol at 25 °C. I. Conductance measurements // J. Sol. Chem. – 1983. – V. 12, №3. – P. 161-170.
- Hojo M., Miyauchi Y., Ide N., Tanio A., Imai Y. Triple ion formation ability of picrate in protophobic aprotic solvents with very low basicity // J. Electroanal. Chem. – 1992. – V. 340, №1-2. – P. 197-212.
- Chantooni M.K., Kolthoff J.M., Roland G. Transfer activity coefficients between some dipolar aprotic solvents and alcohols of salts composed of various anions and potassium complexed with bis(4,4'(5')-t-butylbenzo)-18-crown-6 // Aust. J. Chem. 1983. V. 36, №9 P. 1753-1765.
- Kolthoff I.M., Chantooni M.K. Crown ether complexed alkali metal picrate ion pairs in water-saturated dichloromethane as studied by electrolytic conductance and by partitioning into water. Effect of lithium chloride on partitioning // J. Chem. Eng. Data. – 1997. – V. 42, №1. – P. 49-53.
- Sawada K., Chigira F., Satoh K., Komatsuzaki T. Electronic spectra of ion pairs of picrate ion with alkali-metal polyether complexes in non-aqueous solvent // J. Chem. Soc., Faraday Trans. – 1997. – V. 93, №10. – P. 1903-1908.
- Kolthoff J.M., Chantooni M.K. Electronic absorption spectra of ion pairs composed of substituted amine picrates in acetonitrile // J. Amer. Chem. Soc. – 1968. – V. 90, №12. – P. 3005-3009.
- 17. Smagowski H. Spectrophotometric investigations of the reaction of picric acid with some aniline derivatives in acetonitrile // Polish J. of Chem. 1990. V. 64, №16. P. 175-181.
- 18. Фиалков Ю.Я., Дынер Л.Л. Влияние растворителя на ионизацию в системе пикриновая кислота пиридин // Ж. общей химии. 1978. Т. 48, №2. С. 253-256.
- 19. Coplan M.A., Fuoss R.M. Single ion conductances in nonaqueous solvents // J. Phys. Chem. 1964. V. 68, №5. P. 1177-1181.
- Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители. Физические свойства и методы очистки. М.: Изд-во иностранной литературы, 1958. 520 с.
- 21. Рачинский Ф.Ю., Рачинская М.Ф. Техника лабораторных работ. Л.: Химия, 1982. 432 с.
- 22. Wu Y.C., Koch W.F., Hamer W.J., Kay R.L. Review of electrolytic conductance standarts // J. Solut. Chem. – 1987. – V. 16, №12. – P. 985-997.
- 23. Робинсон Р.А., Стокс Р.. Растворы электролитов / [пер. с англ. под ред. А.Н. Фрумкина]. М.: Изд-во иностр. лит., 1963. 646 с.
- 24. Методы измерения в электрохимии. Т.2 [пер. с англ. Г.А. Абидор, Н.М. Алпатова, С.Х. Айтьян, под ред. Э. Егера и А. Залкинда] / Коллект. автор, Д.Ф. Эванс, М.А. Матесич, Р.Л. Кей, И.Г. Абидор. М.: Мир, 1977. 475 с.
- 25. Nelder J.A., Mead R. A Simplex Method for Function Minimization // Comput. J. 1965. V. 7, №4. P. 308 313.
- 26. Калугин О.Н., Вьюнник И.Н. Некоторые вопросы обработки кондуктометрических данных. І. Алгоритм оптимизации для симметричных электролитов // Ж. общ. химии. 1989. Т. 59, №7. С. 1628-1633.
- 27. Калугин О.Н., Вьюнник И.Н. Некоторые вопросы обработки кондуктометрических данных. III. Существующие варианты // Ж. общ. химии. 1990. Т. 60, №6. С. 1213-1216.

- Lee W.H., Wheaton R.J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 1. Relaxation terms // J. Chem. Soc., Faraday Trans. II. 1978. V. 74. P. 743-766.
- Lee W.H., Wheaton R.J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2. – Hydrodynamic terms and complete conductance equation // J. Chem. Soc., Faraday Trans. II. – 1978. – V. 74. – P. 1456-1482.
- Lee W.H., Wheaton R.J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 3. Examination of new model and analysis of data for symmetrical electrolytes // J. Chem. Soc., Faraday Trans. II. 1979. V. 75. P. 1128-1145.
- 31. Берштейн И.Я., Каминский Ю.Л. Спектрофотометрический анализ в органической химии 2-е изд., перераб. и доп. Л.: Химия, 1986. 199 с.
- 32. Reynolds M.B., Kraus Ch.A. Properties of electrolytic solutions. XXXIII. Conductance of some salts acetone at 25°C // J. Amer. Chem. Soc. 1948. V. 70, №5. P. 1709-1713.
- 33. Juillard J., Kolthoff J.M. Dissociation and homoconjugation constants of some acids in methyl isobutyl ketone // J. Phys. Chem. 1971. V. 75, №16. P. 2496-2504.
- Goga S.T., Lebed A.V., Mchedlov-Petrossyan N.O. Conductivity and dissociation constants of quaternary ammonium perchlorates and picrates in 4-metyl-pentan-2-one // J. Chem. Eng. Data – 2010. doi: 10.1021je9008969.

Поступила в редакцию 19 марта 2010 г.

І. М. Пальваль, О. В. Лебідь, М. О. Мчедлов-Петросян. Асоціація іонів пікрату та калія в апротонному розчиннику: дослідження методами кондуктометрії та спектрофотометрії.

В змішаному розчиннику ацетон – *н*-бутилацетат з масовим співвідношенням 1 : 1 при 25 °С визначені значення константи асоціації пікрату з іоном К⁺ за допомогою кондуктометричного і спектрофотометричного методів. Фореограма успішно описується за припущенням однієї рівноваги (K⁺ + Pic⁻ \leftarrow K⁺Pic⁻, $\lg K_{ass} = 3.89 \pm 0.04$, $\Lambda_0 = 112 \pm 3$ См·см²·моль⁻¹), причому гіпотеза утворення іонних трійників надто незначно покращує опис експериментальних даних. Хоча внаслідок недостатньої різниці спектрів поглинання вільного іону Ріс⁻ та іонного асоціату невизначеність в оцінці константи рівноваги із спектральних даних ($\lg K_{ass} = 4.2 \pm 0.3$) суттєво вище, але в цілому результати, що одержані з використанням двох методів, узгоджуються.

Ключові слова: пікрат калію, іонна асоціація, змішаний розчинник, ацетон, *н*-бутилацетат, кондуктометрія, спектрофотометрія, константа іонної асоціації.

I. N. Palval, A. V. Lebed, N. O. Mchedlov-Petrossyan. The association of picrate and potassium ions in aprotic solvent: a conductance and spectrophotometry study.

In the mixed acetone – *n*-butylacetate solvents with mass ratio 1 : 1 at 25 °C, the values of the association constant of picrate with K⁺ were determined by the conductance and spectrophotometric methods. The phoreogram can be successfully described by assuming the existence of a sole equilibrium (K⁺ + Pic⁻ \leftarrow K⁺Pic⁻, $\lg K_{ass}$ = 3.89 ± 0.04, Λ_0 = 112 ± 3 S·cm²·мol⁻¹). The hypothesis of ionic triplets only insignificantly refines the fitting of the experimental data. Though the uncertainty of the equilibrium constant, caused by poor resolution of the free Pic⁻ ion and the ion associate, is essentially higher in the case of the spectrophotometric method ($\lg K_{ass}$ = 4.2 ± 0.3), the results obtained by the both methods agree in outline.

Key words: potassium picrate, ion association, mixed solvent, acetone, *n*-butylacetate, conductivity, spectro-photometry, ion association constant.

Kharkov University Bulletin. 2010. № 895. Chemical Series. Issue 18(41).