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We introduce quantum mechanical counterparts of line curvatures and surface curvatures for estimating 
the degree of nonlinearity and complexity in quantum states of the corresponding dynamic systems. The 
measures are used to discuss the peculiarities of the systems in the context of quantum chaos. The use of 
the fluctuations of the curvatures for distinguishing chaotic from regular behaviour is considered. The 
method is applied to analyze the Henon-Heiles and Yang-Mills model systems. 

Introduction 

Curvature analysis for dynamical systems has a long history, the earliest work in this field was evi-
dently the time-honored paper by Hadamard [1] providing a fundamental example of a chaotic motion 
of a point particle on the surface of constant negative curvature. A special attention to the curvatures 
associated with complex dynamical systems was given in the remarkable study by Krylov on the 
foundations of statistical mechanics [2]. Finally, the seminal investigation by Anosov [3] generated a 
great body of papers considering ergodic properties of dynamic systems on closed Riemannian mani-
folds with negative curvature [4-7]. 

Within chemical physics problems, in particular the transition-state theory, the Krivoshey's paper 
[9] provided the first semi-quantitative applications of Anosov’s results on the exponential divergence 
of many nearby geodesics on Riemannian manifolds of negative curvatures (specifically, in the vicin-
ity of a saddle point on the potential energy surfaces). This work is closely related with the general 
aspects of the geometrisation of classical dynamics considered in detail in many comprehensive re-
views and original works [10-17]. In application to molecular problems the relevant simplified study is 
also given in Ref. [18] and termed by us the chemical geometro-dynamics. The recent detailed and 
extended study [17] reflects a very wide scope of possibilities for exploring the dynamical chaos in 
rather complex systems by geometrical methods. In this context it is also worth referring to the curva-
ture analysis of dynamical trajectories in Ref. [19]. In all these works the dynamical problems are 
treated in the framework of the conventional classical mechanics. 

A special branch of the differential-geometrical approach is an appropriate quantum description. 
Rather than discussing in detail the conceptual difficulties of the quantum chaos, that is the finger-
prints of deterministic chaos in quantum mechanics, we confine ourselves to quoting the most impor-
tant general reviews [20 - 27].  

The quantum molecular kinematics developed in [28] should also be mentioned. In this and subse-
quent works [29-31] special quantum complexity measures are derived from the differential geometri-
cal properties of the spatial curves associated with the electron paths in molecules. In particular, we 
studied a model of the folding process in oligopeptides [31] concurrently using the quantum-chemical 
chirality measures (defined previously in Ref. [28]) and molecular dynamic simulation extended by 
the analysis of the dynamical complexity [32]. 

A logical step to a broader use of quantum kinematics is to study quantum complexity for generic 
dynamical systems in which the classical deterministic chaos is clearly detected. Thus, the main goal 
of the present work is to define appropriate quantum curvature measures beyond the quantum-
chemical approach given in [28-31] and to demonstrate their advantages for typical dynamical systems 
investigated previously by other methods [19-27]. 

1. Quantum counterparts of curvature measures 

Here we sketch of our main approach [29] and give only few necessary definitions modified to fit a 
broader context. From the classical kinematics as differential geometry of particle paths we take the 
key notions such as the trajectory length (one might term it as a zero-order curvature) and the usual 
(the first-order) curvature which we call the 1-curvature. The higher-order curvatures, such as the tor-
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sion for 3-dimentional spatial trajectories, are not considered here (the torsion, however, can be di-
rectly applied to chiral quantum systems [28]). 

Introducing a position vector )(trr =  as a function of time t  we define conventionally a me-
chanical momentum as a time derivation )t(p r=  (masses can be included in coordinates by passing 
to the so-called mass-weighted coordinates). The explicit expressions for the above mentioned length 
and 1-curvature are 

dtLcl ∫= p ,     (1) 

3/
.

ppp∧=clK ,     (2) 

where ∧  stands for the vector product operation. Proceeding to the quantum-mechanical treatment we 
have to replace the momentum and its time derivatives (in particular, the force vector) by their quan-
tum analogues that are the corresponding operators. In doing so, time-averaged quantities become the 
conventional quantum-mechanical averages over a given state vector Ψ : 

ΨΨ= AA ˆ  

where Â  is the associated operator for the classical dynamical quantity a . In accordance with the 
theory of linear operators, a modulus of a dynamic quantity is translated into a positive semidefinite 
operator, that is the operator modulus. Therefore, the quantum length L , being associated with classi-
cal quantity (1), is defined:  

P̂=L           (3) 

In the same fashion, the quantum 1-curvature K  is the average value  
KK ˆ=          (4) 

where, strictly speaking, one must deal with the associated quantum curvature operator, K̂  of the form 
3ˆ

.
ˆˆ −∧ PPP

         (5) 

or its more symmetric form that guarantees the Hermiticity. However, 
1ˆ −

P is not a well defined opera-

tor due to the appearance of the zero eigenvalues in P̂ . This causes a problem not only for practical 
computations, and in this work we follow the same prescriptions as in [29] where the singular de-
nominator is removed and the Hermitian curvature operator is taken to be 

PPPP ˆ
.
ˆ

.
ˆˆ

2
1ˆ ∧−∧=K .                   (6) 

In [29,30] we directly computed the quantities (3), (4) using rough simplifications for the operators 
P̂  and (6), which were  treated at a certain semiempirical level of quantum chemistry. With this, the 

indices (3) and (4) were considered, following quantum kinematics, the molecular complexity meas-
ures. This viewpoint can be straightforwardly extended to quantum dynamics. 

Now we add to these measures an additional quantum measure derived from the geometrised clas-
sical dynamics mentioned in the Introduction. The typical geometrisation is based on the Maupertuis-
Jacobi metric generating a specific Riemann space. The average curvature R  (an analogue of the 
Gauss curvature for 2-D surfaces) takes the form 

}{ 32

2

)(4
)6(

)(
)1(

UE
UUN

UE
UNR

−
∇⋅∇

−−
−
∇

−= ,   (7) 

where N stands for the number of degrees of freedom, E  is the total energy (a motion integral for the 
real trajectory) and )(rUU = is the potential function, such that U∇−  is a force vector.  The above 
expression (7) is derived (ignoring misprints) many times [13,14,18] and recently this quantity has 
been reconsidered in the review [17] as well. As it is stressed in this work and in [33], the Maupertuis-
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Jacobi metric is not suitable for the practical use. In quantum mechanics the singularities caused by the 
denominators in Eq. (7) are also objectionable. If we neglect these denominators and the gradient 
terms we just arrive at the expression proposed in [16,17] for the geometrisation scheme given by the 
Eisenhart metrics. It means that in our study the quantum operator for a dynamical curvature is defined 
in a simple form  

UK E
2ˆ ∇=        (8) 

The subscript E  reflects the fact that Eq. (8) essentially expresses a curvature due to Eisenhart [11]. 
Therefore, the term −E curvature is rather appropriate in this case, and we define such −E curvature 
as follows 

EE KK ˆ= .      (9) 
As a result, our approach leads to three quantum complexity measures (3), (4), and (9) and the associ-
ated operators P̂  and (6), (8). 

Along with EK  the curvature of the potential energy function is also a useful quantity, and in 2-
dimentional case it can be defined via the Hessian of U , specifically, 

222

2

])()(1[
)(

yx

xyyyxxcl
U UU

UUU
K

++

−
= ,     (10) 

where xUU x ∂∂= /  and so on. As in the previous case of 1-curvature (2), we neglect the denomina-
tor and introduce the corresponding U-curvature operator  

2)(ˆ
xyyyxxU UUUK −= ,     (11) 

such that the quantity 

UU KK ˆ=       (12) 
is used as an additional curvature index. Note that in the theory of dynamical systems the correspond-
ing classical quantity is widely used for a simplified analysis of the trajectory instability within the 
Brumer-Duff-Toda (BDT) approach [34-36]. 

2. Some properties of quantum curvatures 

The usefulness of the above defined curvature measures can be elucidated by specific calculations 
on generic systems some of which are discussed below and in the next section. Here we give only 
some simplest properties helping us to realise a possible range of applications of the quantum curva-
tures. 

We start with the quantum length (3) which cannot disappear for bound states due to the interrela-
tion between P̂  and the kinetic energy operator T̂ , namely  

2/1)ˆ2(ˆ T=P                            (13) 

(recall also the quantum virial theorem). Therefore, the index (3) is a nonzero quantity even for one-
dimensional systems. For estimations the inequality 

2/1ˆ2 TL ≤    

can be used (it trivially follows from the Cauchy- Swarz inequality). An additional information can be 
obtained from the fluctuations of the index (3). Owing to Eqs. (3) and (13) the relative fluctuations 

LLTL /) 2/12ˆ2( −=δ                (14) 

are zeroed for a free motion such as that of a particle in a potential box. Then the relative fluctuation 
of the quantum length can be viewed as a general measure of nonlinearity. 

A different situation is with the 1-curvature measure (4). By definition, it should vanish for the sys-
tems with one degree of freedom. Moreover, the index itself vanishes identically for any system con-
sisting of harmonic coupled oscillators. This fact is simply proved by transforming to an equivalent 
uncoupled system in terms of the normal coordinates. Then each new independent subsystem pos-
sesses one degree of freedom giving no contribution to the spatial curvature. Therefore, the quantum 
1-qurvature gives a more appropriate measure of nonlinearity automatically eliminating from consid-
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eration the trivial systems with the potential energy having a quadratic form. We stress that the index 
K  tracing only nonlinearity cannot distinguish between systems with regular motion (in classical 
understanding) and those with chaotic behaviour. The description of quantum chaos is too complicated 
problem to be resolved by a limited set of indices. Nevertheless, we hope that, again, the relative fluc-
tuations 

KKKK /)ˆ 2/12 2( −=δ      (15) 
would allow us to recognize certain differences between the chaotic and regular states at the level of 
such simplified quantum description. 

Now we consider the quantum −E curvature (9). Apart from the occasional cases of null values, 
this index vanishes for U  satisfying the Laplace equation, that is for harmonic functions. It means that 
some special cases of nonlinearity cannot be directly treated by EK . In the case of coupled harmonic 
oscillators the index will be constant, so in order to exclude this trivial case the usual fluctuation 
analysis is a suitable tool. In other words, the quantity EKδ  calculated as in Eq. (12) is a more appro-
priate index of the quantum complexity and nonlinearity. Note that the similar fluctuation of the clas-
sical quantity U2∇  is first introduced in [15], and actually, this fluctuation is a base of the whole 
geometrical approach exposed in the review [17].  

Nevertheless, aforementioned vanishing of EK  for the harmonic functions somewhat narrows the 
range of its applicability. This peculiarity is seen in the case of the so-called Henon-Heiles system, 
very popular for exploring chaos and nonlinearity, The corresponding potential is 

)(2/)( 322222 yyxyxU yx βαωω +++= ,   (16) 

where xω , yω  are the usual harmonic frequencies, and α  and β  are  the nonlinearity constants. 

For the special Henon and Heiles choice 3/1−=β  we have 222
yxU ωω +=∇ , that is a non-

informative behaviour, whereas for this and other choices of β  the system is rather complicated and 
develops a chaotic regime as well (see [37] or numerous textbooks and reviews such as [21,22,34,36]). 
Admittedly, the potentials of such kind are rare, and normally EK  and EKδ should help too. 

As for the U-curvature (12) it is worth noting that generally it is not a positive definite quantity. 
Moreover, in classical dynamics the appearance of the negative values of cl

UK  gives a rough estima-
tion of the critical energy associated with the developed chaotic motion. In the quantum description 

UK  (12) can serve similar purposes. Nevertheless, there are many situations where BDT estimations 
are not reliable for detecting classical chaos, and the same is evidently possible for our index UK . 
However, for our analysis a distribution of the curvature values over the whole range of the quantity is 
more essential. Therefore, UK  will be useful as well. 

3. Numerical examples 

We study two well-known nonlinear systems, the Henon-Heiles (H-H) coupled oscillators with the 
potential energy (16), and the classical Yang-Mills (Y-M) system with  

2/4/)(2/)( 224422 yxyxyxU βα ++++= ,   (17) 
where α  and β  are nonlinearity constants. Both systems are thoroughly explored with classical dy-
namics methods as well as quantum-mechanical ones (see [21,22,26,34-40] and references therein). 
The cited quantum mechanical investigations were aimed to find what are the quantum manifestations 
of classical stochasticity in the discrete level structure. It would be overoptimistic to say that the stud-
ies provided a clear solution of this problem, although bright ideas and techniques appeared when 
seeking the quantum chaos phenomena. Thus, new approaches are desirable, and the quantum curva-
ture method allows us to obtain an additional information. 

The remarkable property of the H-H and Y-M systems is their classical integrability for some ex-
ceptional sets of parameters xω , yω , α  and β  (for more general problems see [41]). This peculi-

arity makes the considered problems very suitable for testing new schemes of analysis. 
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For the H-H system the parameters for the integrable regime are given, for example, in [20], Chap-
ter 8. For example,  

.2,1

,, arbitraryare

== βα

ωω yx
. 

In our study we specified these integrable case parameters as follows 

.2,1
,1.7,4

==
==

βα

ωω yx                           (18) 

For other cases the system allows coexistence of chaotic and regular classical trajectories. As such 
non-integrable case parameters we take the set from [42]: 

3/1,1118.0

,1

−==

==

βα

ωω yx
.           (19) 

For the Y-M system the integrable case parameters are 
1,3/2 == βα             (20) 

(see Ref. [39,41]). The situation realizing a chaotic Y-M dynamics is suitably described by the set 
[39]:  

1,0 == βα .            (21) 
With these sets we will also examine the quantum curvature indices. 

Let us briefly outline some computational details. For solving the spectral problem generated by 
the two-degrees-of-freedom Hamiltonian 

),(2/)( 22 yxUppH yx ++=                       (22) 

( xp  is the momentum of the x-component) we used the common finite-dimensional technique. The 
direct products  

1dim0
1dim0}{

−≤
−≤⊗

n
mnm  

of the eigenstates 1dim0}{ −≤mm  of the harmonic oscillator is chosen as an appropriate basis set, such 
that the finite-size solution were 

nmC
nm

mn ⊗=Ψ ∑
−

=

1dim

0,

.           (23) 

Typically we took the basis size 6050dim ÷= , thereby dealing with the eigenvalue problem for the 
matrix 

dim'0dim,0
dim'0dim,0''ˆ

≤≤≤≤
≤≤≤≤⊗⊗

nn
mmnmHnm              (24) 

of size 3000≈ . As a rule, we selected only a small reliable part ( %10≈ ) of the computed spectrum 
having an admissible variance value 410−≈ (for correct estimations of accuracy the consistent evalua-
tion of the average 2Ĥ  was performed for each eigenvectors). For arbitrary power value ν , the 

matrix elements nxm νˆ  etc were easily calculated recurrently starting from the known result for 

nxm ˆ .  
The typical results are shown in Figs. 1-4 and 6-9. In all figures the curvature indices (the abscissa) 

are presented as a function of the energy (the coordinate) calculated for individual eigenstates. All the 
quantities are given in atomic units. Apart from the curvature indices (3), (4), (9), and (12) we also 
present the quantum Shannon entropy (Figs. 5 and 10) for which the corresponding probability distri-
bution was taken from the squared set of the expansion coefficients mnC , Eq. (23). Similar entropy 
measures are frequently used in the analysis of quantum chaos [36, 42].  

From the presented plots we see that the quantum results behave rather differently in the integrable 
Hamiltonian systems and non-integrable ones. We also see a poorer distinction between these cases 
for the Yang-Mills systems (17). It is interesting that in this case the quantum E-curvature (9) provides 
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a clearer difference between the two types of dynamics. . We also see that the fluctuations  provide a 
more clear distinction of the dynamical systems and it is in accordance with the behaviour of  the clas-
sical fluctuations reported in [17]. At the same time, in both examples (the H-H and Y-M systems) the 
behaviour of the Shannon entropy seems to be visually less obvious. 
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Fig. 1. Quantum length (3) and its fluctuation (14) for the H-H integrable (18) and nonintegrable (19) cases. 
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Fig. 2. Quantum 1-curvature (4) and its fluctuation (15) for the H-H integrable (18)  

and nonintegrable (19) cases. 
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Fig. 3. Quantum E-curvature (9) and its fluctuation for the H-H integrable (18) case  

(in the H-H non-integrable (19) case the E-curvature is zero). 
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Fig. 4. Quantum U-curvature (12) for the H-H integrable (18) and non-integrable  (19) cases. 
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Fig. 5. The quantum Shannon entropy for the H-H integrable (18) and non-integrable (19) cases. 
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Fig. 6. Quantum length (3) and its fluctuation (14) for the Y-M integrable (20)  

and non-integrable (21) cases. 
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Fig. 7. Quantum 1-curvature (4) and its fluctuation (15) ) for the Y-M integrable (20)  

and non-integrable (21) cases. 



A. V. Luzanov 

 185 

Integrable case 
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Fig. 8. Quantum E-curvature (9) and its fluctuation (15) for the Y-M integrable (20)  

and non-integrable cases (21). 
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Fig. 9. Quantum U-curvature (12) for the Y-M integrable case (20) and non-integrable case (21). 
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Fig. 10. The quantum quantum Shannon entropy for the Y-M integrable case (20)  

and non-integrable case (21). 
 
Note that for the H-H model the dissociation energy is equal to 3.136/1 2 ≈α  and the critical en-

ergy (the rough estimation of the onset of the developed dynamical chaos) is 7.8≈  [43].  Figs. 1-5 
show that a more irregular distribution of the curvatures appears only near 10=E .  Thus, in the cur-
vature approach the quantum stochasticity emerges with a more developed dynamic nonlinearity than 
in its classical counterpart. A similar situation is observed for the non-integrable Y-M problem where 
the graphs show irregularity above 75÷=E . It is worth to mention the previous study of the same 
problem in Ref. [39] where not as clear distinction of the quantum chaos was obtained using quite 
different approach based on the level-spacing distribution analysis.  

4. Concluding remarks 

The specific results given in the preceding section have to be regarded as preliminary, first phase of 
the implementation of the quantum curvature analysis to dynamic Hamiltonian systems. Further stud-
ies are required in order to understand a connection of the scheme with other techniques. In the major-
ity of current approaches an emphasis is made on the properties of the selected wave functions with 
the energy in the range of the developed classical chaos. In our scheme we analyze the whole set of the 
relevant dynamic averages in the range of their quantum variation. When studying further examples 
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we could encounter unpredictable situations, however, we hope that at the qualitative level the method 
will be able to make a distinction between two kinds of quantum regimes, the chaotic and the regular 
ones. 

In this paper we examined only two-dimensional Hamiltonian systems with polynomial potential. It 
is especially intriguing to apply the curvature analysis to many-degree-of-freedom systems such as the 
quantum Toda chain and the related many-particle nonlinear models. Incorporating a more extended 
statistical technique such as cumulant analysis etc., is also desirable. We are planning to investigate 
such the problems in the nearest future.  
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квантовых кривизн в простых колебательных системах. 
Вводятся квантовомеханические аналоги кривизн линий и поверхностей для оценки степени нелинейно-

сти и сложности квантовых состояний соответствующих динамических систем. Введенные меры исполь-
зуются для выявления особенностей систем в контексте проблемы квантового хаоса. На примере модель-
ных задач Хенона-Хейлиса и Янга–Миллса продемонстрировано использование флуктуаций кривизн для 
различения регулярного и хаотического режима поведения. 


