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In homogeneous chemical kinetics, models of complicated reactions are constructed from 
models for simple reactions. This is not the case for solid-state reaction kinetics in which 
there is no conception of the simple reaction. Until very recently the routine was to use one-
stage models (e.g. Avrami-Erofeev model) in analyzing experimental data. This practice was 
changed by the ICTAC Kinetic Project Computational aspects of kinetic analysis [1]. This 
fairly large-scaled project was organized similarly to 1983-year project [2] in homogeneous 
chemical kinetics, which proved the ambiguity in the interplay between the mechanism and 
the observed kinetic behaviour and contributed considerably into the new strategy of explor-
ing mechanisms of homogeneous reactions. In the ICTAC Kinetic Project numerous multi-
stage models have been tried, and one of important conclusions is that multi-stage models are 
more adequate. This conclusion is far from being unexpected, but suggested combinations of 
models are fairly arbitrary and raise a number of questions when considered from the angle of 
inverse kinetic problems.  

When a two-stage model provides a better fit in comparison with each of one-stage models, 
an essential question is whether this is due to a conceptual improvement of the model or the 
result of the greater approximation flexibility alone. Table 1 illustrates one of numerous ex-
amples from the ICTAC Kinetic Project.   

Table 1. Efficient activation energies (Ea; kJ/mole) for the thermal decomposition of 
ammonium perchlorate found with the use of different models [1] 

Combinations of models

 

Concurrent stages Consecutive stages 

Avrami equation  

n-th  order equation  

n=3.57 0.34; =66.96 0.76  

n=0.192 0.02; =105,76 0.24

  

n=3.10 0.22; =66.46 0.83

  

n=0.202 0.02; 
=107.86 0.21 

1-st order equation with 
autocatalysis  

n-th  order equation  

=67.57 0.31   

n=0.191 0.02; =105.76 0.24

  

=74.08 0.82   

n=0.204 0.02; 
=107.71 0.20 

 

It is worth emphasizing, first of all, that the same rate equations are combined both as 
concurrent and as consecutive stages. The corresponding values of activation energies differ 
insignificantly, and accordingly there is no answer to the question which combination is more 
correct or more preferable. This fact as itself indicates essential problems in the combination 
of conventional rate equations. Also, within this approach the quantity of the activation en-
ergy, which has no clear physical meaning in solid state reaction kinetics and is permanently 
discussed [3], falls into two arbitrary items. And these items are practically the same irrespec-
tively of whether concurrent or consecutive stages are concerned. The basis of this is not 
clear.  

In Table 1, the first model is the Avrami equation. To discuss combinations of models, we 
need it in the differential form 

)1/(1ln1 nnk
dt

d
                                     (1)  

This is a geometric-probabilistic equation. Within the geometric-probabilistic approach the 
main co-factors of models have the following interpretation [4].   is the degree of conversion, 
the fraction of the original unit reaction space occupied with a new phase. (1- ) is the 
fraction of the free space. However, another interpretation of this quantity is not less 
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important, i.e. it determines the interconnection between actual and extended magnitudes 

1/ extdd where ext)1ln( is the extended degree of conversion.  
Avrami equation is combined with the n-th order equation  

nk
dt

d
1                                              (2) 

in which n is 1, 2 or 3. And here we face another essential issue concerning the combination 
of models. If the interpretation of the co-factor (1- ) is the same, each of the above values of 
n deprives it of the meaning of boundary length. And also, values of n obtained for Avrami 
equation and n-th order equation disagrees considerably. On the other hand, the value of n 
given in Table 1 for eq. (2) is far from being integer. This implicitly implies a different inter-
pretation for the co-factor (1- ). But then these two equations cannot be combined into one 
two-stage model.  

Some further relevant issues are illustrated with Table 2. These results have been obtained 
for the same set of experimental data by different authors.   

Table 2. Another set of results for the thermal decomposition of ammonium perchlorate  [1] 

Models n Ea; kJ mol-1 

1) Avrami equation n=2.922 0.049

 

=99.28 0.12 
2) n-th  order equation 

OR n=0.21 0.06 =111,76 0.09 

Contracting geometry  
n=1.258 0.019;

 

=111,76 0.09 

 

In addition to equations (1) and (2),  contracting geometry equation is used 
)1/(1 nnk

dt

d
                                          (3) 

where n is 1 for contracting circle and 2 for contracting sphere [5].  The value restored from 
experimental data is close to n=1. Two points are worth note in connection with these re-
sults. For the n-th order equation parameters given in Table 2 is close to those given in Ta-
ble1, but at the same time parameters found for Avrami equation differ considerably. Even 
more strange is that contracting geometry equation, completely different by its physical 
meaning from n-th order equation, gives the same value of efficient activation energy.  

This is a good illustration of the current contradiction between direct and inverse problems 
in solid state reaction kinetics. When direct problems are concerned, the aim is to find some 
invariants for a process under study, and when different models lead to the same values of 
parameters, this is a positive result. But from the angle of inverse problems this means that 
one cannot discriminate such different models as contracting geometry model and n-th order 
model, and thus the possibility to get an insight into the mechanism is strictly limited.  

In some works the Sestak-Berggren equation  
pnmk

dt

d
1ln1                                 (4) 

is used with various values of parameters. This generalized model includes the n-th order 
equation (m=p=0), the Prout-Tompkins equation (m=n=1; p=0), Avrami-Erofeev equation 
(m=0; n=1) and some other conventional equations. But when parameters are different, this 
means some combination of the above equations, and one again faces the problem of interpre-
tation of the co-factors, which may be different in different models and incompatible. If the 
geometric-probabilistic interpretation is used, it should be taken into account that any choice 
of m 1 negates the fundamental assumption of the equiprobability of nuclei formation [4].  

The conclusion is that the above combinations of models, though increasing the approxima-
tion flexibility of models, raise a number of essential issues from the angle of inverse problems 
and require additional discussion. The stages and equations have been selected in the frame-
work of the thermokinetics, and actually the trial-and-error method has been employed which 
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is becoming more and more inefficient in contemporary chemistry. The issues outlined provide 
additional weighty arguments in favour of the viewpoint that a further progress in solid state 
reaction kinetics  is hardly possible without passing the limits of thermokinetics towards 
structural and dynamical considerations.   
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