
   
. 2002. 573. . .9(32) 

46 

   

  

   

 

 541.128 + 519.21 

DISCRETE RANDOM TESSELLATIONS WITH MOOR NEIGHBOURHOODS:  
A KINEMATIC STUDY 

© 2002 A.I. Korobov 

Random tessellations with Moor neighbourhoods appear in investigating thermal decomposition 
kinetics of ammonium hydrocarbonate single crystals. The way is shown in which this variety of 
tessellations appears and its main kinematic properties are examined. Result obtained emphasizes 
the need to account for actual metric in kinetic data analysis in terms of geometric-probabilistic 
models.  

Previously the concept of discrete random tessellations has been introduced for describing 
nucleation and growth to impingement processes in a metric determined by the crystal struc-
ture of a solid reagent [1,2]. In 1980th-1990th conventional continuous random tessellations, 
previously the object of pure mathematics, proved to be efficient in simulating disparate phe-
nomena and processes [3]. Generally, a random tessellation is characterized by its typical 
element [4]. In [5] the kinetic representativity of the typical element has been shown for the 
first time in the continuous case. This means the possibility to describe kinetics of nucleation 
and growth to impingement processes in terms of random tessellations.  

Currently, the Euclidian metric is implied when geometric-probabilistic models are used for 
simulating solid state reaction kinetics [6]. Actually, the metric is different and is determined 
by the crystal structure of a solid reagent and the peculiarit ies of the unrestricted nucleous 
growth [2]. There is no natural discrete analogs for continual Euclidian random tessellations. 
To interrelate them, continual analogous of discrete non-Euclidian tessellations have been 
compared with Euclidian one [7]. The difference between corresponding kinetic curves has 
shown to be significant, which means that a considerable error is introduced when the actual 
metric is not taken into account.  

The simplest possible discrete random tessellation is the one with von Neumann neigh-
bourhood. Its kinematic properties and geometric peculiarit ies  are presented in [8]. The pre-
sent paper deals with a different type of discrete random tessellations characterized by Moore 
neighbourhood which is described in terms of displacement vectors as  
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This type of random tessellations arises from examination of the thermal decomposition of 
ammonium hydrocarbonate. Specially prepared single crystals of this compound are plate-like 
with only one face (001) entering the reaction [9]. Crystals of NH4HCO3 belong to the rhom-
bic syngony; the spatial group is Pccn; parameters of the elementary cell: a = 7.255 A, b = 
10.709 A, c = 8.746 A [10]. The projection of this crystal structure onto (001) face has the 
symmetry group c2mm; cell parameters a'=a and b'=b; coordinate origin is at ?, ?, z [11]. As 
many as 8 types of planigons correspond to this [12].   When the thermal decomposition pro-
ceeds in the kinetic regime, rhombic negative crystals oriented in one and the same manner 
are observed. Their stable unrestricted growth may be described using 4 ,23 planigon type. 
In this case one planigon encompasses two NH4 

 

HCO3 conjugated pairs of the ammonium 
hydrocarbonate, and its entrance into reaction means the transfer of two protons with the 
release of two NH3 molecules and two H2CO3 molecules into the gaseous phase [13]. The 
kinetic stability of H2CO3 in the absence of water has been shown recently both experimen-
tally and theoretically [14].  

First steps of the unrestricted growth of  rhombous negative crystals in terms of planigons 
are shown in Fig.1. They are shown with black circles and in light gray respectively. Upon 
impingements these negative crystals form a random tessellation. Topologically equivalent to 
this is the random discrete tessellation with the Moor neighbourhood (1) which determines 
the metric  
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0 0max ,dist x x y y .                                  (2) 

Fig.2 shows a small part of this tessellation in the 
assumption of Voronoi case, i.e. when all nuclei ap-
pear simultaneously. Three growth steps are shown 
for each of two nuclei (counting off the nucleation 
step). The boundary between them (circles with dag-
gers) subdivides the plane into cells which are closer 
to the given nucleus than to any other nuclei. Peculi-
arities of the boundary are as follows. 

 

the central part of the boundary is either horizon-
tal (if the distance between nuclei along x-axis is 
smaller) or vertical (if the distance between nuclei 
along y-axis is smaller); 

 

the number of sites in this linear part is equal to min (| x|, | y|); 

 

The central part may be prolonged (ad infinitum if there are only two nuclei) in both di-
rection with stepwise parts oriented along one of diagonals; 

 

the central part may consist of only one cite if both nuclei are situated on the same di-
agonal; 

 

under certain mutual situation of nuclei the boundary may form a two-dimensional array 
as is shown, for example, in Fig.3; the same is the case in regions where three or more grow-
ing nuclei meet.  

The computational algorithm  
includes the following stages. A 
random tessellation was 
represented as a three-
dimensional array of sites; the 
third dimension has been used 
for storing various 
characteristics. The required 
number of these sites was 
chosen at random as nucleation 
sites. To ensure the 
homogeneity of the tessellation, 
x-coordinates of all nuclei must 
be either even or odd and the 
same is required for y-
coordinates. This is the main 
distinction of the computational 
algorithm from the previous one 
[8] in which nuclei positions ware corrected to be only "black" or only "white". With the 
account of the above peculiarit ies boundaries were determined in the following way. For each 
site distances to all nucleation sites were computed and the minimal distance was identified. 
Then the number of these values in the array of distances was determined. This is the 
multiplicity of a site. It was stored together with the numbers of equidistant nuclei for further 
computations.  Finally, the step number at which a given site would be reached by a growing 
nucleus was computed. After all sites have been processed, boundary cells of a tessellation 
were rejected. All statistical characteristics discussed below were computed for internal cells 
only. Discussed results were obtained for the 1500 x 1500 tessellations with 10000 nucleous.  

In [5] the notion of kinematic curve was introduced for continual tessellations as the de-
pendence of the actual boundary length with the account of impingements on the nucleous 
radius. This curve may be appropriately scaled to be compared with experimental rate-time 
curves. In the discrete case the kinematic curve is computed as the dependence of the num-
ber of sites forming the boundary on the step number. The curve computed in this way is 
shown in Fig.4. Similar curves may be computed separately for -gons of the tessellation (  = 
4, 5, 6...). 3-gons were not found at all in this study. Qualitatively their mutual situation is as 
in the von Neumann case [8]: with the increase of 

 

the maximum is higher and is shifted 

 

Fig.1 . Un res tr icted growth of rh om-
bou s n ega t ive crys ta ls in term s of 
P4A,23 planigons. 

  

Fig.2 . Sm a ll pa r t of  ran-
dom Voron oi tes s ella t ion 
with Moor neigh bourhood. 

Fig.3 . Th e bou n da ry be-
tween two n u clei m a y 
gen era lly be two-
dimensional.
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towards greater step numbers. Results obtained proved that 6-gons are prevailing in the tes-
sellation, i.e. this mysterious regularity is preserved. The kinematic curve for 6-gons approxi-
mates reasonably well the total kinematic curve for the whole tessellation (Fig.4). As before 
[8] immediate neighbours were identified as nucleation sites that possess a common edge 
consisting of at least two neigbouring sites irrespectively to their multiplicity.  

In Fig.4 the total kinematic curve for Moor 
tessellation is compared with that for von 
Neumann tessellation at the same nuclei den-
sity. The maximum for the former is 60% 
higher and is reached 30% quicker. This ap-
proach makes it possible to qualitatively es-
timate the  mistake which is introduced into 
data analysis if the metric is chosen incor-
rectly. The situation of the maximum of rate-
time curves is the main and not infrequently 
the only quantity which is used to judge 
about process parameters. Recall that the 
maximum in the Euclidian case is even lower 
than in the von Neumann case [7]. Therefore, 
in the case of Moore tessellations the mistake 
because of wrong metric choice is higher. In 
terms of discrete random tessellations the 
crystal structure of a solid reagent manifests itself in the stochastic regularities of nucleation 
and growth to impingements, which makes the geometric-probabilistic approach as a whole a 
more chemically specific one.  
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Fig.4 . Com pa rison of k in em a tic cu rves for 
Moor tes sella t ion (s olid ) a n d von Neu m a n n 
tessella tion (dash).  
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