УДК 539.19

ЭЛЕКТРОННЫЕ СВОЙСТВА ОСНОВНОГО СОСТОЯНИЯ π -систем среднего размера в точном многоэлектронном описании

© 2001 А.В.Лузанов, Ю.Ф.Педаш, А.Ю.Семенов, Д.С.Коняев

Предложенная ранее вычислительная схема строгого учета эффектов π -электронной корреляции в рамках метода полного конфигурационного взаимодействия (FCI) применена в расчетах электронных свойств π -сопряженных систем с различным числом N π -центров - вплоть до значения N = 14. Показано, что для 14-центровых задач весьма типичным является незначительный вклад (2-4%) классических и неклассических ковалентных структур в π -электронную волновую функцию метода FCI. Вычисленные π -электронные поляризуемости, особенно гиперполяризуемости, весьма чувствительны к учету π -электронной корреляции. В частности, молекулы фульваленового ряда представляют собой пример систем, где стандартный метод MO не дает даже правильного знака величины средней гиперполяризуемости.

При заданном полуэмпирическом гамильтониане точное описание π -оболочек сопряженных молекул дает, как известно, метод полного конфигурационного взаимодействия (английская аббревиатура: FCI), примененный к соответствующей π -электронной задаче. В 80-90-е годы применение FCI для реальных систем существенно расширилось не только благодаря новым компьютерам, но и как результат усовершенствования теории и алгоритмов самого метода FCI [1-3]. Один из таких подходов был предложен и реализован в серии наших работ [4-7]; в дальнейшем он развивался для ряда прикладных задач нелинейной оптики [8-12].

Цель настоящей работы – представить результаты расчета методом FCI основного состояния π -сопряженных систем различных структурно-химических классов. Такое исследование представляется полезным как для выяснения сферы применимости основной квантовохимической модели – метода MO и приближенных схем учета электронной корреляции, так и для получения заведомо корректных численных данных для фундаментальных молекулярных свойств, таких как электрические поляризуемости. Здесь мы исследуем π -оболочки с различным числом (N) π -электронов – от значений N=4 до N=14. Ранее для N=14 были проведены лишь одиночные расчеты [13,14].

В данных расчетах применялась система π -параметров, заимствованная из исследования [15] и использованная во всех предыдущих наших работах по π -электронному методу FCI. В этой параметризации все ненулевые резонансные интегралы одинаковы и равны $\beta_0 = -2.274$ эВ; двухцентровые интегралы $\gamma_{\mu\nu}$ вычислялись по формуле Оно со значением одноцентрового интеграла $\gamma_0 = 11.13$ эВ.

Энергия *п*-электронной корреляции в полиенах

Энергетической характеристикой неточности одноэлектронной модели МО служит, как известно, энергия корреляции λ_{corr} – разность между "точной" энергией E(FCI) и энергией E(MO). Для π -электронов чаще используют приведенную ("удельную") энергию корреляции, приходящуюся на один электрон: $\overline{\lambda}_{corr} = \lambda_{corr} / N$. Наличие «точных» значений $\overline{\lambda}_{corr}$, даваемых методом FCI, позволяет провести в данной работе детальное сравнение эффективности различных приближенных подходов в теории электронной корреляции. Для полиенов такое сравнение частично было осуществлено еще в [15]. Однако необходимых точных данных FCI тогда не было, а некоторые из приближенных схем расчета, которые здесь будут обсуждаться, долгое время технически были недоступны из-за несовершенсва их первоначальных формулировок. В первую очередь речь здесь идет о различных вариантах одного из самых эффективных многоэлектронных подходов (несмотря на его невариационный характер) – теории связанных кластеров (английская аббре-

виатура СС) [16,17]. В работе мы ограничиваемся простейшей моделью ССD, учитывающей лишь двухчастичные связанные кластеры, а также линейным приближением к ней – вариантом L-CCD. Ранее в этих приближениях изучались только циклические полиены при использовании несколько иного *п*-электронного гамильтониана [18]. В наших расчетах применен эффективный численный алгоритм, предложенный в работе [19]. Заметим, что рабочие уравнения метода ССD и типичных его обобщениий выводятся и прямыми методами операторной алгебры, развитыми одним из нас [20]. Но здесь мы не касаемся деталей самой теории СС.

Как и [18], наряду с L-CCD и CCD, будем приводить данные для ограниченного метода конфигурационного взаимодействия CID, включающего все дважды возбужденные конфигурации. Этот метод не обладает важным свойством, присущим точному методу FCI и методам теории CC, – так называемой размерной согласованностью [16], обеспечивающей физически обязательное свойство аддитивности энергии корреляции для изолированных систем. С помощью простой поправки Давидсона [16], грубо учитывающей вклад несвязанных двухэлектронных кластеров, можно получать почти размерно-согласованные оценки знергии корреляции по схеме CID+Davidson. Наконец, метод MP2 – теория возмущений 2-го порядка по Меллеру-Плессету – также приводит к физически корректной размерно-согласованной энергии корреляции. Для линейных полиенов результаты выполненных расчетов приведены в табл.1.

11			5	1	11 ,	
Метод	4	6	8	10	12	14
MP2	0.0675	0.0695	0.0713	0.0727	0.0738	0.0747
CID	0.1711	0.1680	0.1637	0.1591	0.1548	0.1508
CID+Davidson	0.1841	0.1868	0.1865	0.1848	0.1824	0.1798
L-CCD	0.1866	0.1929	0.1971	0.2001	0.2024	0.2042
CCD	0.1754	0.1779	0.1792	0.1800	0.1805	0.1808
FCI	0.1766	0.1805	0.1832	0.1852	0.1867	0.1879

Таблица 1. Сравнение значений приведенной энергии корреляции (эВ) в полиенах С_NH_{N+2} для различных схем учета электронной корреляции

Особенностью рассматриваемых полиеновых систем является то, что метод FCI предписывает для них слабый рост приведенной энергии корреляции с увеличением длины полиена, но как видно из табл.1, только MP2 и кластерные методы воспроизводят эту закономерность. Удовлетворительные в численном отношении результаты дает и простая схема CID+Davidson, чем фактически подтверждаются данные работы [15]. Однако из общих соображений и по результатам других наших расчетов метод CCD более предпочтителен. Например, при использовании стандартной π -параметризации по Matara расчеты CCD также дают правильную зависимость $\overline{\lambda}_{corr}$ от N, хотя оцениваемая по CCD энергия корреляции для рассматриваемых систем несколько превосходит 100%. Здесь уже явно проявляется дефект практических формулировок кластерной теории – их невариационный характер. Заметим, что в случае конденсированных ароматических систем эфективность модели CCD сохраняется (например, для антрацена мы получили 96.4% энергии корреляции). В дальнейшем представляется важным исследовать π -системы в высших приближениях теории CC, и для этих целей представляенные здесь данные метода FCI также окажутся полезными.

Анализ характеристик волновой функции

Косвенной характеристикой корреляционных эффектов является индекс коллективности (?) N-электронного состояния, определенный для FCI в [21]. Для метода MO всегда ?=1, так что отклонение ?(FCI) от 1 говорит о степени многодетерминантности исследуемого состояния. Для линейных полиенов C_NH_{N+2} при тех же значениях N, что и в табл.1, получено

? (FCI) = { 1.177, 1.305, 1.453, 1.624, 1.820, 2.045 },

Сравнение этих данных с результатами табл.1 показывает, что имеется определенная симбатность между энергией корреляции и индексом коллективности. Последний, однако, экспоненциально нарастает с ростом длины цепи, как это фактически и было показано ранее [21]. Удобно заменить ? некоторой интенсивной величиной, стремящейся, как и $\overline{\lambda}_{\rm corr}$, к конечному пределу при $N \to \infty$. В качестве такой величины возьмем некий эффективный порядок связи

$$P_{\rm eff} = \sqrt{2a^{-1/n} - 1} ,$$

где n = N/2 – число электронных пар. Эта формула основывается на анализе волновой функции методом FCI в терминах приближения сильно ортогональных геминалей [21]. Расчет на основе данных табл.1 дает для N=4÷14 следующий ряд значений P_{eff}:

0.9183, 0.9003, 0.9000, 0.8976.

Очевидна стабилизация Р_{eff}. Из предельного значения Р_{eff} ≈0.935 для полиенов нетрудно произвести обратный пересчет индекса коллективности и получить в качестве иллюстрации оценку этой величины для N=100: ? ≈26.

Другой интересный класс молекул с фиксированными двойными связями представляют циклические системы – радиалены

7-RAD

5-RAD 6-RAD

и бициклические системы - фульвалены

Данные табл. **2** говорят о том, что сама по себе цикличность не вносит дополнительных особенностей – для рассматриваемых структур, как и для полиенов, более существенным обстоятельством оказывается фиксированность двойных связей.

Таблица 2. Энергия корреляции $\overline{\lambda}_{corr}$ (эВ) и индекс коллективности ? для радиаленов и фульваленов.

Система	5-RAD	6-RAD	7-RAD	5,5-FULV	7,7-FULV	5,7-FULV
$\overline{\lambda}_{corr}$	0.1609	0.1604	0.1596	0.1593	0.1701	0.1540
?	1.443	1.546	1.642	1.429	1.693	1.451

Наконец, приведем данные для классических ароматических систем (табл. 3), добавив к ним молекулу пирацилена, анализ ароматичности которой проводился в [22].

Таблица **3**. Энергия корреляции $\overline{\lambda}_{corr}$ (эВ) и индекс коллективности ? для ароматичных молекул.

Система	бензол	нафталин	антрацен	бифенил	пирацилен
$\overline{\lambda}_{corr}$	0.1343	0.1406	1.1476	1.1359	0.1502
?	1.114	1.221	1.382	1.242	1.403

Видно, что ароматичность явно смягчает энергетические эффекты электронной корреляции. В то же время, с увеличением размера ароматической молекулы волновая функция π -системы становится столь же многоконфигурационной, как и для полиеновой цепи сравнимой длины.

Наглядной характеристикой корреляционных эффектов служат веса W_k ионноковалентного состава. В соответствии с [21] величины W_k определяются как сумма квадратов модулей конфигурационных коэффициентов, отвечающим всем 2k-полярным структурам. Например, W_0 – вес чисто ковалентной компоненты, W_2 – вес биполярных структур и т.д. Ограничимся приведением данных только для полиенов (табл. 4).

Ν	W ₀	W ₁	W_2	W_3	W_4	W_5	W ₆	W ₇
4	0.4306	0.4815	0.0879					
6	0.2675	0.4825	0.2263	0.0237				
8	0.1652	0.4130	0.3259	0.0895	0.0063			
10	0.1018	0.3258	0.3658	0.1728	0.0322	0.0017		
12	0.0627	0.2444	0.3577	0.2446	0.0793	0.0109	0.0004	
14	0.0385	0.1774	0.3207	0.2895	0.1373	0.0330	0.00350	0.0001

Таблица 4. Веса вкладов Wk вкладов 2k-полярных структур для полиенов CNHN+2

Из них следует важный вывод — резкое падение веса ковалентных структур с увеличением размеров сопряженной системы, что подтверждается расчетами и других систем Например, даже в такой типично ароматической системе, как антрацен, вес ковалентных структур не превышает 2%, причем вклад 6-полярных структур даже больше чем 2- и 4полярных.

Электрические свойства

Влияние корреляции на электрические свойства молекул обсуждалось неоднократно, в том числе и во многих наших работах [6,8-11]. В данной работе прежний анализ электрических свойств становится более содержательным благодаря рассмотрению более широкого ряда систем.

		,		
Ν	$\overline{\alpha}(MO)$	$\overline{\alpha}(FCI)$	$\overline{\gamma}(MO)$	$\overline{\gamma}(FCI)$
4	26.16	18.90	0.174·10 ⁴	1.098·10 ⁴
6	56.12	37.76	2.617·10 ⁴	5.605·10 ⁴
8	98.39	61.78	1.263·10 ⁵	1.809·10 ⁵
10	153.14	90.11	4.141.10 ⁵	4.460·10 ⁵
12	220.13	121.94	1.081.10 ⁶	0.918·10 ⁶
14	298.79	156.58	2.407 ·10 ⁶	1.660·10 ⁶

Таблица 6. Сравнение средней π-поляризуемости α и средней гиперполяризуемости γ (все величины в ат. ед.) в методах МО и FCI для полиенов C_NH_{N+2}

Средняя дипольная поляризуемость $\overline{\alpha}$ при учете корреляции систематически понижается; в то же время для гиперполяризуемости ситуация иная – сначала $\overline{\gamma}(MO) < \overline{\gamma}(FCI)$, и только начиная с N=12, корреляция приводит к обратному неравенству $\overline{\gamma}(FCI) < \overline{\gamma}(MO)$, т.е. к той же картине что и для $\overline{\alpha}$. Анализ скорости изменения гиперполяризуемости по интерполяционной формуле $\overline{\gamma} = \gamma_o N^{\delta}$, где δ – эффективный показатель, приводит к тем же выводам, что и в [8-10] – слишком большой скорости изменения $\overline{\gamma}(MO)$ по сравнению с $\overline{\gamma}(FCI)$. Для неальтернированных полиеновых систем найдены уточненные (по сравнению с [8]) значения этого показателя: $\delta[MO]=5.34$ и $\delta[FCI]=4.01$.

Приведем также выборочные данные для других π-структур (табл. 7). В целом для ароматических молекул, таких как антрацен и пирацилен, корреляция проявляется таким же образом, как и для полиенов небольших размеров – отличия для величин α в и γ в 1.5÷3 раза. Для радиаленов, видимо, из-за их высокой симметрии, метод МО дает резуль-

таты, довольно близкие к FCI. Однако в фульваленах гиперполяризуемость в рамках метода MO уже совершенно неудовлетворительна – не воспроизводится даже знак $\overline{\gamma}$.

				-
Молекула	$\overline{\alpha}(MO)$	$\overline{\alpha}(\text{FCI})$	$\bar{\gamma}(MO)$	$\overline{\gamma}(\text{FCI})$
бифенил	64.75	60.06	2.644·10 ⁴	3.674·10 ⁴
6-RAD	69.80	58.84	3.642·10 ⁴	5.201·10 ⁴
7-RAD	76.26	65.42	3.917·10 ⁴	5.474·10 ⁴
5,7-FULV	110.03	96.51	-3.546·10 ⁴	9.318·10 ⁴
7,7-FULV	148.15	104.15	-3.329·10 ⁴	2.586·10 ⁵
пирацилен	87.02	78.38	1.359·10 ⁴	3.738·10 ⁴
антрацен	93.61	82.69	2.180·10 ⁴	6.083·10 ⁴

Таблица 7. Сравнение средней π-поляризуемости α и средней гиперполяризуемости γ (все величины в ат. ед.) в методах МО и FCI для 12- и 14-центровых π-систем

Заключение

Резюмируя представленные выше результаты изучения π -оболочек с полным учетом электронной корреляции, можно сделать следующие выводы. Во-первых, даже для сравнительно небольших сопряженных систем приближение спин-гамильтониана и методы теории резонанса, оперирующие весьма ограниченным набором структур, не являются адекватными уже потому, что реальный вклад ковалентных стуктур, как свидетельствует метод полного конфигурационногго взаимодействия, оказывается ничтожным. Однако и к результатам метода МО следует относиться с осторожностью, особенно при расчете физических свойств, описываемых теорией возмущений высокого порядка. Отклик многоэлектронной системы на внешнее поле для каждой молекулы достаточно индивидуален, и непредсказуемым образом хартри-фоковская теория нелинейного отклика может оказаться просто несостоятельной. Это следует помнить, воспринимая многочисленные одноэлектронные схемы расчеты нелинейно-оптических свойств сложных молекул. В связи с этим перед теорией стоит крайне трудная проблема - дать хотя бы качественные оценки степени уклонения величин поляризуемостей, получаемых в молекулярно-орбитальных схемах, от тех значений, которые должен давать практически недоступный для больших молекул строгий метод FCI.

Литература

1. Bauschlicher C.W., Langhoff S.R., Taylor P.R. Adv. Quant. Chem. 1990. V.77. P.103-161.

2. Лузанов А.В. Теор. и эксперим. химия. 1991. Т. 27. №4. С.413-426.

3. Sherill C.O., Schaefer H.F. Adv. Quant. Chem. 1999. V.34. P.143-269.

4. Лузанов А.В. Теор. и эксперим. химия. 1989. Т.25. №1. С.1-12.

5. Лузанов А.В., Педаш Ю.Ф., Иванов В.В. Журн. структ. химии. **1989**. **Т.30**. №5. **С.3-11**.

6. Педаш.Ю.Ф., Иванов В.В., Лузанов А.В. Теор. и эксперим. химия. 1989. Т.25. №4. С.659-664.

7. Luzanov A.V., Wulfov A.L., Krouglov V.O. Chem. Phys. Lett. 1992. V.197. P.614-619.

8. Педаш.Ю.Ф., Иванов В.В., Лузанов А.В. Теор. и эксперим. химия. 1992. Т.28. №1. С.21-24.

9. Педаш.Ю.Ф., Семенов А.Ю. Теор. и эксперим. химия. 1993. Т.29. №4. С.338-342.

10. Педаш.Ю.Ф., Семенов А.Ю. Журн. структ. химии. 1997. Т.38. №1. С.196-198.

11. Лузанов А.В., Иванов В.В. Укра?нський ф'Зичний журнал. 1997. Т.42. №10. С.1187-1195.

12. Иванов В.В., Бойченко И.В., Лузанов А.В. Журн. структ. химии. 1998. Т.39. №4. С.563-570.

13. Kuwajima S., Soos Z. J. Am. Chem. Soc. 1987. V.109. P.107-113.

14. McWilliams, Hayden G., Soos Z. Phys.Rev. B. 1991. V.43. P.9777.

15. Куприевич В.А.,Клименко В.Е., Шрамко О.В. Теор. и эксперим. химия. 1976. Т.12. №6. С.732-738.

16. Уилсон С. Электронные корреляции в молекулах. Москва: Мир. 1987. 304 с.

17. Paldus J. in : Methods in Computational Molecular Physics. Eds. S.Wilson and G.H.F.Diercksen. N.Y. & London, Plenum Press. 1992. P.99-192.

18. Piechuch P., Paldus J. Int.J.Quant.Chem. 1991. V.S25. P.9-34.

19. Scuceria G., Scheiner A., Lee T.J., Rice J.E., Schaefer III H.F. J. Chem. Phys. 1997. V.86. №5. P.2881-2890.

20. Лузанов А.В. Ковариантные методы и электронные модели молекул. Харьков : Фолио. 1998. 256 с.

21. Лузанов А.В., Педаш Ю.Ф., Мохамад С. Теор. и эксперим. химия. 1990. Т.26. №5. С.513-525.

22. Coulson C.A., Mallion R.B. J. Am. Chem. Soc. 1976. V.98. P.592.

Поступила в редакцию 27 ноября 2001 г.

Kharkov University Bulletin. 2001. N 532. Chemical Series. Issue 7(30). A.V.Luzanov, Yu.F.Pedash, A.Yu.Semenov, D.S.Konyaev. The ground state electronic properties of some moderate-size π -systems in exact many-electron treatment.

The computational scheme previously developed by the authors for calculating π -electron correlation effects within full configuration intraction method (FCI) is applied to various π -conjugated systems with different numbers of π -centers up to 14. It is shown that for 14 π -center systems it is very typical that the contribution W_0 of classical and non-classical covalent structures into the corresponding FCI-wavefunction is quite small (2-4%). In so doing W_0 drastically decreases by an exponential law with increasing the size of a π -system. The computed π -electron polarizabilities, especially hyperpolarizabilities, turn out to be very sensitive in respect to accounting for electron correlation effects. As a result, some fulvalenoid systems are presented as examples where a conventional MO treatment leads to even incorrect sign of average π -hyperpolarizability.